|
|
/*
|
|
|
* main.c
|
|
|
*
|
|
|
* Created on: 22 нояб. 2018 г.
|
|
|
* Author: maxx
|
|
|
*/
|
|
|
#include <avr/io.h>
|
|
|
#include <util/delay.h>
|
|
|
#include <avr/interrupt.h>
|
|
|
#include <avr/pgmspace.h>
|
|
|
#include <compat/deprecated.h> //sbi, cbi etc..
|
|
|
#include "avr/wdt.h" // WatchDog
|
|
|
#include <stdio.h> // printf etc..
|
|
|
#include "uart_extd.h"
|
|
|
#include "spi.h"
|
|
|
|
|
|
#include "globals.h" //Global definitions for project
|
|
|
|
|
|
#include "stdbool.h"
|
|
|
#include "Ethernet/socket.h"
|
|
|
#include "Ethernet/wizchip_conf.h"
|
|
|
#include "Application/Blynk/blynk.h"
|
|
|
#include "Internet/DNS/dns.h"
|
|
|
|
|
|
#define _MAIN_DEBUG_
|
|
|
|
|
|
//***********BLYNK related: BEGIN
|
|
|
#define SOCK_BLYNK_CLIENT 6
|
|
|
|
|
|
// Shouldn't used here, because used DNS resolving BLYNK server IP
|
|
|
// IP: 139.59.206.133 for <blynk-cloud.com> via WIN7 nslookup - actually need to use DNS resolving
|
|
|
//Resolve here via DNS query see below Domain_IP[4]
|
|
|
//uint8_t blynk_server_ip[4] = {139, 59, 206, 133}; // Blynk cloud server IP (cloud.blynk.cc, 8422)
|
|
|
//uint8_t BLYNK_RX_BUF[DATA_BUF_SIZE];
|
|
|
|
|
|
uint8_t BLYNK_TX_BUF[BLYNK_DATA_BUF_SIZE];
|
|
|
|
|
|
//***********BLYNK related: END
|
|
|
|
|
|
//***************** DNS: BEGIN
|
|
|
//////////////////////////////////////////////////
|
|
|
// Socket & Port number definition for Examples //
|
|
|
//////////////////////////////////////////////////
|
|
|
#define SOCK_DNS 5
|
|
|
|
|
|
unsigned char gDATABUF_DNS[512];
|
|
|
//#define IP_WORK
|
|
|
|
|
|
////////////////
|
|
|
// DNS client //
|
|
|
////////////////
|
|
|
uint8_t Domain_name[] = BLYNK_DEFAULT_DOMAIN; // BLYNK server URI
|
|
|
uint8_t Domain_IP[4] = {0, }; // Translated IP address by DNS Server
|
|
|
//***************** DNS: END
|
|
|
|
|
|
/*
|
|
|
* (19)OK (v1.0) Port from W5500_EVB(NXP LPc13xx + W5500) to AtMega1284p+W5500 BLYNK IOT app (look: https://blynk.io/)
|
|
|
* TODO:
|
|
|
* OK (v1.2) Add DNS resolve before BLYNK app running to <blynk-cloud.com>
|
|
|
* OK (v1.1) Add LED_ON/LED_OFF handle on LED D13 BLYNK Android application
|
|
|
* GPIO OUT - works OK (look ./Application/Blynk/blynkDependency.c digitalWrite(..) && pinMode(..))!
|
|
|
* OK(v1.2) Add printout <blynk> server metrics on start-up
|
|
|
* Need to try next:
|
|
|
* OK (v1.3)GPIO IN - fixed bug (remove redundant space symbol in <dw xx xx >)
|
|
|
* OK Virtual IN/OUT - virtual pin push message see below (1.7)
|
|
|
* OK (v1.4)Analog Read/Write
|
|
|
* OK (v1.5)Restore pins state on board reboot
|
|
|
* OK (v1.6) Add push event (P13/PD.5 toggle every 10 sec && send state P13 to BLYNK server)
|
|
|
* OK (v1.7) Add push event to Virtual PIN1. Every 10sec push message: "Uptime: xxx sec", to BLYNK server (widget Terminal)
|
|
|
* OK (v1.8) Need compare local blynk.c code with modern <blynk> library - (Too old version here - 0.2.1 (On git blynk March 2019 - 0.6.x) )
|
|
|
* OK (v1.8) Made fix correction blynk.h/blynk.c 16.02.2019 to match BLYNK protocol 0.6.0
|
|
|
*
|
|
|
* PS.
|
|
|
* Further correction of the code from MBED authors (Vladimir Shimansky, Dmitriy Dumanskiy ..) is highly desirable.
|
|
|
* Because I'm not the author of mbed libs. And I do not quite well understand how this should work in their opinion.
|
|
|
*
|
|
|
* Author of unofficial porting to AVR Mega1284p/644p + W5500 Ethernet NIC (Wiznet sockets library using without Arduino):
|
|
|
* Ibragimov Maxim aka maxxir, Russia Togliatty ~xx.03.2019
|
|
|
*/
|
|
|
|
|
|
//***********Prologue for fast WDT disable & and save reason of reset/power-up: END
|
|
|
uint8_t mcucsr_mirror __attribute__ ((section (".noinit")));
|
|
|
|
|
|
// This is for fast WDT disable & and save reason of reset/power-up
|
|
|
void get_mcusr(void) \
|
|
|
__attribute__((naked)) \
|
|
|
__attribute__((section(".init3")));
|
|
|
void get_mcusr(void)
|
|
|
{
|
|
|
mcucsr_mirror = MCUSR;
|
|
|
MCUSR = 0;
|
|
|
wdt_disable();
|
|
|
}
|
|
|
//***********Prologue for fast WDT disable & and save reason of reset/power-up: END
|
|
|
|
|
|
//*********Global vars
|
|
|
#define TICK_PER_SEC 1000UL
|
|
|
volatile unsigned long _millis; // for millis tick !! Overflow every ~49.7 days
|
|
|
|
|
|
//*********Program metrics
|
|
|
const char compile_date[] PROGMEM = __DATE__; // Mmm dd yyyy - Дата компиляции
|
|
|
const char compile_time[] PROGMEM = __TIME__; // hh:mm:ss - Время компиляции
|
|
|
const char str_prog_name[] PROGMEM = "\r\nAtMega1284p v1.8 Static IP BLYNK WIZNET_5500 ETHERNET 16/03/2019\r\n"; // Program name
|
|
|
|
|
|
#if defined(__AVR_ATmega128__)
|
|
|
const char PROGMEM str_mcu[] = "ATmega128"; //CPU is m128
|
|
|
#elif defined (__AVR_ATmega2560__)
|
|
|
const char PROGMEM str_mcu[] = "ATmega2560"; //CPU is m2560
|
|
|
#elif defined (__AVR_ATmega2561__)
|
|
|
const char PROGMEM str_mcu[] = "ATmega2561"; //CPU is m2561
|
|
|
#elif defined (__AVR_ATmega328P__)
|
|
|
const char PROGMEM str_mcu[] = "ATmega328P"; //CPU is m328p
|
|
|
#elif defined (__AVR_ATmega32U4__)
|
|
|
const char PROGMEM str_mcu[] = "ATmega32u4"; //CPU is m32u4
|
|
|
#elif defined (__AVR_ATmega644P__)
|
|
|
const char PROGMEM str_mcu[] = "ATmega644p"; //CPU is m644p
|
|
|
#elif defined (__AVR_ATmega1284P__)
|
|
|
const char PROGMEM str_mcu[] = "ATmega1284p"; //CPU is m1284p
|
|
|
#else
|
|
|
const char PROGMEM str_mcu[] = "Unknown CPU"; //CPU is unknown
|
|
|
#endif
|
|
|
|
|
|
|
|
|
//FUNC headers
|
|
|
static void avr_init(void);
|
|
|
void timer0_init(void);
|
|
|
|
|
|
|
|
|
//Wiznet FUNC headers
|
|
|
void print_network_information(void);
|
|
|
|
|
|
// RAM Memory usage test
|
|
|
int freeRam (void)
|
|
|
{
|
|
|
extern int __heap_start, *__brkval;
|
|
|
int v;
|
|
|
int _res = (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
|
|
|
return _res;
|
|
|
}
|
|
|
|
|
|
|
|
|
//******************* MILLIS ENGINE: BEGIN
|
|
|
//ISR (TIMER0_COMP_vect )
|
|
|
ISR (TIMER0_COMPA_vect)
|
|
|
{
|
|
|
// Compare match Timer0
|
|
|
// Here every 1ms
|
|
|
_millis++; // INC millis tick
|
|
|
// Тест мигаем при в ходе в прерывание
|
|
|
// 500Hz FREQ OUT
|
|
|
// LED_TGL;
|
|
|
}
|
|
|
|
|
|
unsigned long millis(void)
|
|
|
{
|
|
|
unsigned long i;
|
|
|
cli();
|
|
|
// Atomic tick reading
|
|
|
i = _millis;
|
|
|
sei();
|
|
|
return i;
|
|
|
}
|
|
|
//******************* MILLIS ENGINE: END
|
|
|
|
|
|
//***************** UART0: BEGIN
|
|
|
// Assign I/O stream to UART
|
|
|
/* define CPU frequency in Mhz here if not defined in Makefile */
|
|
|
//#ifndef F_CPU
|
|
|
//#define F_CPU 16000000UL
|
|
|
//#endif
|
|
|
|
|
|
/* 19200 baud */
|
|
|
//#define UART_BAUD_RATE 19200
|
|
|
//#define UART_BAUD_RATE 38400
|
|
|
#define UART_BAUD_RATE 115200
|
|
|
|
|
|
static int uart0_putchar(char ch,FILE *stream);
|
|
|
//static void uart0_rx_flash(void);
|
|
|
|
|
|
static FILE uart0_stdout = FDEV_SETUP_STREAM(uart0_putchar, NULL, _FDEV_SETUP_WRITE);
|
|
|
//PS. stdin не переназначаю, т.к. удобнее с ним работать через uart.h - api:
|
|
|
|
|
|
/*
|
|
|
* Т.е. например так
|
|
|
c = uart1_getc();
|
|
|
if (( c & UART_NO_DATA ) == 0)
|
|
|
{
|
|
|
uart1_putc( (unsigned char)c );
|
|
|
}
|
|
|
При этом чекаем что буфер приема не пуст и опрос идет неблокирующий (+ работаем через UART RX RINGBUFFER),
|
|
|
а если работаем в стиле stdin->getchar() там опрос блокируется пока символ не будет принят (поллинг)
|
|
|
через UART1_RX, т.е. неудобно.
|
|
|
*/
|
|
|
|
|
|
// STDOUT UART0 TX handler
|
|
|
static int uart0_putchar(char ch,FILE *stream)
|
|
|
{
|
|
|
uart_putc(ch);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
// Очищаем буфер приема UART1 RX (иногда нужно)
|
|
|
/*
|
|
|
static void uart0_rx_flash(void)
|
|
|
{
|
|
|
// Считываем все из ring-buffer UART1 RX
|
|
|
unsigned int c;
|
|
|
do
|
|
|
{
|
|
|
c = uart_getc();
|
|
|
} while (( c & UART_NO_DATA ) == 0); // Check RX1 none-empty
|
|
|
|
|
|
}
|
|
|
*/
|
|
|
//***************** UART0: END
|
|
|
|
|
|
//***************** ADC: BEGIN
|
|
|
|
|
|
#ifndef ADC_DIV
|
|
|
//12.5MHz or over use this ADC reference clock
|
|
|
#define ADC_DIV (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0) //:128 ADC Prescaler
|
|
|
#endif
|
|
|
|
|
|
#ifndef ADC_REF
|
|
|
// vcc voltage ref default
|
|
|
#define ADC_REF (1<<REFS0)
|
|
|
#endif
|
|
|
|
|
|
void adc_init(void)
|
|
|
{
|
|
|
ADCSRA = 0;
|
|
|
ADCSRA |= (ADC_DIV); // ADC reference clock
|
|
|
ADMUX |= (ADC_REF); // Voltage reference
|
|
|
ADCSRA |= (1<<ADEN); // Turn on ADC
|
|
|
ADCSRA |= (1<<ADSC); // Do an initial conversion because this one is the
|
|
|
// slowest and to ensure that everything is up
|
|
|
// and running
|
|
|
}
|
|
|
|
|
|
uint16_t adc_read(uint8_t channel)
|
|
|
{
|
|
|
ADMUX &= 0b11100000; //Clear the older channel that was read
|
|
|
ADMUX |= channel; //Defines the new ADC channel to be read
|
|
|
ADCSRA |= (1<<ADSC); //Starts a new conversion
|
|
|
while(ADCSRA & (1<<ADSC)); //Wait until the conversion is done
|
|
|
|
|
|
return ADCW; //Returns the ADC value of the chosen channel
|
|
|
}
|
|
|
//***************** ADC: END
|
|
|
|
|
|
//*********************************Timer2 PWM: BEGIN
|
|
|
/*
|
|
|
* Handle PWM out PD7-PIN15:
|
|
|
* OCR2A = 0/127/255; Duty 0/50/100%
|
|
|
|
|
|
* Handle PWM out PD6-PIN14:
|
|
|
* OCR2B = 0/127/255; Duty 0/50/100%
|
|
|
|
|
|
*/
|
|
|
void pwm8bit_timer2_init(void)
|
|
|
{
|
|
|
//PWM on TIMER2 (PD7/OC2A) && TIMER2 (PD6/OC2B)
|
|
|
// PHASE CORRECT PWM 8-bit mode setup
|
|
|
// 31.25kHz FREQ OUT
|
|
|
|
|
|
// Set PD7 to OUT
|
|
|
DDRD |= (1<<7);
|
|
|
// Set PD6 to OUT
|
|
|
DDRD |= (1<<6);
|
|
|
/*
|
|
|
* Clear OCnA/OCnB/OCnC on compare
|
|
|
* match when up-counting. Set
|
|
|
* OCnA/OCnB/OCnC on compare match
|
|
|
* when downcounting.
|
|
|
*/
|
|
|
TCCR2A = (1<<COM2A1)|(1<<COM2B1);
|
|
|
|
|
|
/*
|
|
|
* PHASE CORRECT PWM 8-bit
|
|
|
*/
|
|
|
TCCR2A |= (1<<WGM20);
|
|
|
|
|
|
/*
|
|
|
* clkI/O/1 (No prescaling)
|
|
|
*/
|
|
|
TCCR2B = (1<<CS20); // 16Mhz input
|
|
|
|
|
|
OCR2A = 0x0;// SET output duty cycle OCR2A 0%
|
|
|
OCR2B = 0x0;// SET output duty cycle OCR2B 0%
|
|
|
}
|
|
|
|
|
|
void pwm8bitfast_timer2_init(void)
|
|
|
{
|
|
|
//PWM on TIMER2 (PD7/OC2A) && (PD6/OC2B )
|
|
|
// FAST PWM 8-bit mode setup
|
|
|
// 62.5kHz FREQ OUT
|
|
|
|
|
|
// Set PD7 to OUT
|
|
|
DDRD |= (1<<7);
|
|
|
// Set PD6 to OUT
|
|
|
DDRD |= (1<<6);
|
|
|
/*
|
|
|
* Compare Output Mode, Fast PWM
|
|
|
* Clear OCnA/OCnB/OCnC on compare match,
|
|
|
* Set OCnA/OCnB/OCnC at TOP
|
|
|
*/
|
|
|
TCCR2A = (1<<COM2A1)|(1<<COM2B1);
|
|
|
|
|
|
/*
|
|
|
* FAST PWM 8-bit
|
|
|
*/
|
|
|
TCCR2A |= (1<<WGM21)|(1<<WGM20);
|
|
|
|
|
|
/*
|
|
|
* clkI/O/1 (No prescaling)
|
|
|
*/
|
|
|
TCCR2B = (1<<CS20); // 16Mhz input
|
|
|
|
|
|
OCR2A = 0x0;// SET output OCR2A duty cycle 0%
|
|
|
OCR2B = 0x0;// SET output OCR2B duty cycle 0%
|
|
|
}
|
|
|
//*********************************Timer2 PWM: END
|
|
|
|
|
|
|
|
|
//***************** WIZCHIP INIT: BEGIN
|
|
|
//Shouldn't used here
|
|
|
/*
|
|
|
#define SOCK_TCPS 0
|
|
|
#define SOCK_UDPS 1
|
|
|
#define PORT_TCPS 5000
|
|
|
#define PORT_UDPS 3000
|
|
|
|
|
|
#define ETH_MAX_BUF_SIZE 512
|
|
|
|
|
|
//unsigned char ethBuf0[ETH_MAX_BUF_SIZE];
|
|
|
//unsigned char ethBuf1[ETH_MAX_BUF_SIZE];
|
|
|
*/
|
|
|
void cs_sel() {
|
|
|
SPI_WIZNET_ENABLE();
|
|
|
}
|
|
|
|
|
|
void cs_desel() {
|
|
|
SPI_WIZNET_DISABLE();
|
|
|
}
|
|
|
|
|
|
uint8_t spi_rb(void) {
|
|
|
uint8_t rbuf;
|
|
|
//HAL_SPI_Receive(&hspi1, &rbuf, 1, HAL_MAX_DELAY);
|
|
|
SPI_READ(rbuf);
|
|
|
return rbuf;
|
|
|
}
|
|
|
|
|
|
void spi_wb(uint8_t b) {
|
|
|
//HAL_SPI_Transmit(&hspi1, &b, 1, HAL_MAX_DELAY);
|
|
|
SPI_WRITE(b);
|
|
|
}
|
|
|
|
|
|
void spi_rb_burst(uint8_t *buf, uint16_t len) {
|
|
|
//HAL_SPI_Receive_DMA(&hspi1, buf, len);
|
|
|
//while(HAL_SPI_GetState(&hspi1) == HAL_SPI_STATE_BUSY_RX);
|
|
|
for (uint16_t var = 0; var < len; var++) {
|
|
|
SPI_READ(*buf++);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
void spi_wb_burst(uint8_t *buf, uint16_t len) {
|
|
|
//HAL_SPI_Transmit_DMA(&hspi1, buf, len);
|
|
|
//while(HAL_SPI_GetState(&hspi1) == HAL_SPI_STATE_BUSY_TX);
|
|
|
for (uint16_t var = 0; var < len; var++) {
|
|
|
SPI_WRITE(*buf++);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
void IO_LIBRARY_Init(void) {
|
|
|
uint8_t bufSize[] = {2, 2, 2, 2, 2, 2, 2, 2};
|
|
|
|
|
|
reg_wizchip_cs_cbfunc(cs_sel, cs_desel);
|
|
|
reg_wizchip_spi_cbfunc(spi_rb, spi_wb);
|
|
|
reg_wizchip_spiburst_cbfunc(spi_rb_burst, spi_wb_burst);
|
|
|
|
|
|
wizchip_init(bufSize, bufSize);
|
|
|
wizchip_setnetinfo(&netInfo);
|
|
|
//wizchip_setinterruptmask(IK_SOCK_0);
|
|
|
}
|
|
|
|
|
|
//***************** WIZCHIP INIT: END
|
|
|
|
|
|
int main()
|
|
|
{
|
|
|
// INIT MCU
|
|
|
avr_init();
|
|
|
spi_init(); //SPI Master, MODE0, 4Mhz(DIV4), CS_PB.3=HIGH - suitable for WIZNET 5x00(1/2/5)
|
|
|
|
|
|
|
|
|
// Print program metrics
|
|
|
PRINTF("%S", str_prog_name);// Название программы
|
|
|
PRINTF("Compiled at: %S %S\r\n", compile_time, compile_date);// Время Дата компиляции
|
|
|
PRINTF(">> MCU is: %S; CLK is: %luHz\r\n", str_mcu, F_CPU);// MCU Name && FREQ
|
|
|
PRINTF(">> Free RAM is: %d bytes\r\n", freeRam());
|
|
|
|
|
|
|
|
|
//Wizchip WIZ5500 Ethernet initialize
|
|
|
IO_LIBRARY_Init(); //After that ping must working
|
|
|
print_network_information();
|
|
|
|
|
|
|
|
|
/* DNS client Initialization */
|
|
|
PRINTF("> [BLYNK] Target Domain Name : %s\r\n", Domain_name);
|
|
|
DNS_init(SOCK_DNS, gDATABUF_DNS);
|
|
|
|
|
|
/* DNS processing */
|
|
|
int32_t ret;
|
|
|
if ((ret = DNS_run(netInfo.dns, Domain_name, Domain_IP)) > 0) // try to 1st DNS
|
|
|
{
|
|
|
#ifdef _MAIN_DEBUG_
|
|
|
PRINTF("> 1st DNS Respond\r\n");
|
|
|
#endif
|
|
|
}
|
|
|
else if ((ret != -1) && ((ret = DNS_run(DNS_2nd, Domain_name, Domain_IP))>0)) // retry to 2nd DNS
|
|
|
{
|
|
|
#ifdef _MAIN_DEBUG_
|
|
|
PRINTF("> 2nd DNS Respond\r\n");
|
|
|
#endif
|
|
|
}
|
|
|
else if(ret == -1)
|
|
|
{
|
|
|
#ifdef _MAIN_DEBUG_
|
|
|
PRINTF("> MAX_DOMAIN_NAME is too small. Should be redefined it.\r\n");
|
|
|
#endif
|
|
|
;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
#ifdef _MAIN_DEBUG_
|
|
|
PRINTF("> DNS Failed\r\n");
|
|
|
#endif
|
|
|
;
|
|
|
}
|
|
|
|
|
|
if(ret > 0)
|
|
|
{
|
|
|
#ifdef _MAIN_DEBUG_
|
|
|
printf("> Translated %s to [%d.%d.%d.%d]\r\n\r\n",Domain_name,Domain_IP[0],Domain_IP[1],Domain_IP[2],Domain_IP[3]);
|
|
|
#endif
|
|
|
//IOT BLYK app init:
|
|
|
/* Blynk client Initialization */
|
|
|
PRINTF("Try connect to BLYNK SERVER [%s]: %d.%d.%d.%d:%d..\n\r",Domain_name,Domain_IP[0],Domain_IP[1],Domain_IP[2],Domain_IP[3],BLYNK_DEFAULT_PORT);
|
|
|
blynk_begin(auth, Domain_IP, BLYNK_DEFAULT_PORT, BLYNK_TX_BUF, SOCK_BLYNK_CLIENT);
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
PRINTF("> [BLYNK] Target Domain Name : %s resolve ERROR\r\nReboot board..\r\n", Domain_name);
|
|
|
while(1);
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//Short Blink LED 3 times on startup
|
|
|
unsigned char i = 3;
|
|
|
while(i--)
|
|
|
{
|
|
|
led1_high();
|
|
|
_delay_ms(100);
|
|
|
led1_low();
|
|
|
_delay_ms(400);
|
|
|
wdt_reset();
|
|
|
}
|
|
|
|
|
|
|
|
|
/* Loopback Test: TCP Server and UDP */
|
|
|
// Test for Ethernet data transfer validation
|
|
|
uint32_t timer_tick_1sec = millis();
|
|
|
uint8_t blynk_restore_connection = 1;
|
|
|
uint8_t timer_led2_push_10sec = 0;
|
|
|
static uint8_t _msg[64] = "\0";
|
|
|
while(1)
|
|
|
{
|
|
|
//Here at least every 1sec
|
|
|
wdt_reset(); // WDT reset at least every sec
|
|
|
// Blynk process handler
|
|
|
blynk_run();
|
|
|
|
|
|
//Here every 1sec event
|
|
|
if((millis()-timer_tick_1sec)> 1000)
|
|
|
{
|
|
|
//here every 1 sec
|
|
|
timer_tick_1sec = millis();
|
|
|
//To restore GPIO state on start-up application
|
|
|
if(blynk_restore_connection)
|
|
|
{
|
|
|
if(is_blynk_connection_available())
|
|
|
{
|
|
|
blynk_restore_connection = 0;
|
|
|
//Requests Server to re-send current values for all widgets
|
|
|
PRINTF("++blynk_syncAll event\r\n"); //Just for debug
|
|
|
blynk_syncAll();
|
|
|
}
|
|
|
}
|
|
|
//Every 10sec event for LED2 PIN13, and uptime device
|
|
|
if(++timer_led2_push_10sec == 10)
|
|
|
{
|
|
|
timer_led2_push_10sec = 0; //Clear timer_led2..
|
|
|
//Every 10sec toggle, and push LED2 PIN13/PD5 state to BLYNK server (widget Value Display)
|
|
|
led2_tgl();
|
|
|
blynk_push_pin(13);
|
|
|
|
|
|
//Every 10sec push message: "Uptime: xxx sec", to BLYNK server (widget Terminal)
|
|
|
SPRINTF(_msg, "Uptime: %lu sec\r\n", millis()/1000);
|
|
|
blynk_push_virtual_pin_msg(1, _msg);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
// Timer0
|
|
|
// 1ms IRQ
|
|
|
// Used for millis() timing
|
|
|
void timer0_init(void)
|
|
|
{
|
|
|
/*
|
|
|
*
|
|
|
* For M128
|
|
|
TCCR0 = (1<<CS02)|(1<<WGM01); //TIMER0 SET-UP: CTC MODE & PS 1:64
|
|
|
OCR0 = 249; // 1ms reach for clear (16mz:64=>250kHz:250-=>1kHz)
|
|
|
TIMSK |= 1<<OCIE0; //IRQ on TIMER0 output compare
|
|
|
*/
|
|
|
//For M664p
|
|
|
TCCR0A = (1<<WGM01); //TIMER0 SET-UP: CTC MODE
|
|
|
TCCR0B = (1<<CS01)|(1<<CS00); // PS 1:64
|
|
|
OCR0A = 249; // 1ms reach for clear (16mz:64=>250kHz:250-=>1kHz)
|
|
|
TIMSK0 |= 1<<OCIE0A; //IRQ on TIMER0 output compareA
|
|
|
}
|
|
|
|
|
|
static void avr_init(void)
|
|
|
{
|
|
|
// Initialize device here.
|
|
|
// WatchDog INIT
|
|
|
wdt_enable(WDTO_8S); // set up wdt reset interval 2 second
|
|
|
wdt_reset(); // wdt reset ~ every <2000ms
|
|
|
|
|
|
timer0_init();// Timer0 millis engine init
|
|
|
|
|
|
// Initial UART Peripheral
|
|
|
/*
|
|
|
* Initialize uart11 library, pass baudrate and AVR cpu clock
|
|
|
* with the macro
|
|
|
* uart1_BAUD_SELECT() (normal speed mode )
|
|
|
* or
|
|
|
* uart1_BAUD_SELECT_DOUBLE_SPEED() ( double speed mode)
|
|
|
*/
|
|
|
#if (UART_BAUD_RATE == 115200)
|
|
|
uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) ); // To works without error on 115200 bps/F_CPU=16Mhz
|
|
|
#else
|
|
|
uart_init( UART_BAUD_SELECT(UART_BAUD_RATE,F_CPU) );
|
|
|
#endif
|
|
|
// Define Output/Input Stream
|
|
|
stdout = &uart0_stdout;
|
|
|
|
|
|
//ADC init
|
|
|
adc_init();
|
|
|
adc_read(0); //Dummy read
|
|
|
|
|
|
|
|
|
led1_conf();
|
|
|
led1_low();// LED1 is OFF
|
|
|
|
|
|
led2_conf();
|
|
|
led2_low();//LED2 is OFF
|
|
|
|
|
|
|
|
|
sw1_conf();//SW1 internal pull-up
|
|
|
|
|
|
//pwm8bitfast_timer2_init(); // PD7/OC2A used as FAST 8bit PWM (62.5kHz FREQ OUT)
|
|
|
pwm8bit_timer2_init(); // PD7/OC2A used as PHASE CORRECT 8bit PWM (31.25kHz FREQ OUT)
|
|
|
|
|
|
sei(); //re-enable global interrupts
|
|
|
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
void print_network_information(void)
|
|
|
{
|
|
|
|
|
|
uint8_t tmpstr[6] = {0,};
|
|
|
ctlwizchip(CW_GET_ID,(void*)tmpstr); // Get WIZCHIP name
|
|
|
PRINTF("\r\n=======================================\r\n");
|
|
|
PRINTF(" WIZnet chip: %s \r\n", tmpstr);
|
|
|
PRINTF("=======================================\r\n");
|
|
|
|
|
|
wiz_NetInfo gWIZNETINFO;
|
|
|
wizchip_getnetinfo(&gWIZNETINFO);
|
|
|
if (gWIZNETINFO.dhcp == NETINFO_STATIC)
|
|
|
PRINTF("STATIC IP\r\n");
|
|
|
else
|
|
|
PRINTF("DHCP IP\r\n");
|
|
|
PRINTF("Mac address: %02x:%02x:%02x:%02x:%02x:%02x\n\r",gWIZNETINFO.mac[0],gWIZNETINFO.mac[1],gWIZNETINFO.mac[2],gWIZNETINFO.mac[3],gWIZNETINFO.mac[4],gWIZNETINFO.mac[5]);
|
|
|
PRINTF("IP address : %d.%d.%d.%d\n\r",gWIZNETINFO.ip[0],gWIZNETINFO.ip[1],gWIZNETINFO.ip[2],gWIZNETINFO.ip[3]);
|
|
|
PRINTF("SM Mask : %d.%d.%d.%d\n\r",gWIZNETINFO.sn[0],gWIZNETINFO.sn[1],gWIZNETINFO.sn[2],gWIZNETINFO.sn[3]);
|
|
|
PRINTF("Gate way : %d.%d.%d.%d\n\r",gWIZNETINFO.gw[0],gWIZNETINFO.gw[1],gWIZNETINFO.gw[2],gWIZNETINFO.gw[3]);
|
|
|
PRINTF("DNS Server : %d.%d.%d.%d\n\r",gWIZNETINFO.dns[0],gWIZNETINFO.dns[1],gWIZNETINFO.dns[2],gWIZNETINFO.dns[3]);
|
|
|
}
|
|
|
|