You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hosepump/hose_pump_parametric.scad

349 lines
10 KiB
OpenSCAD

// parametric hose pump for use with stepper motor
// ball bearings used as rollers
// red holes need thread cutting M4 (hole depth 10mm)
// green holes need thread cutting M3 (hole depth 11mm)
$fn=100;
show_case = true;
show_disc = true;
show_lid = false;
show_motor_flange = true;
// ##### PARAMETERS TO ADAPT #####
// GENERAL
clearance = 0.5; // clearence for moving parts
// HOSE
d_hose_out = 4; // outer hose diameter
d_hose_in = 2; // inner hose diameter
r_bending_hose = 19; // outer radius auf bent hose
l_squeeze = 0.6; // distance the hose is squeezed
// BALL BEARINGS
d_bb_out = 11; // outer diameter of ball bearing
d_bb_in = 5; // inner diameter of ball bearing
h_bb = 5; // thickness of ball bearing
// BEARING RAISE
h_br = 0.5;
d_br = 8;
number_of_rollers = 5; // number of rollers used
wall_thickness = 6; // thickness of outer case wall
hose_angle = 15; // angle of hose outlet, 0=parallel
lid_thickness = 4; // thickness of lid
h_disc = 10; // heigth (thickness) of rotating disc. Change carefully screwholes migth stick out
d_lid_screw_borehole = 2.5; // bore hole diameter for lid screw thread cutting
d_lid_screw = 3; // diameter of lid screws (must match with bore hole diameter)
// MOTOR
motor_width=42; // width of (stepper)motor
d_motor_shaft = 5.2; // diameter of the motors shaft
r_shaft_flattening = 0.4; // depth (radius) of flattening of motor shaft
d_motor_flange_excess = 22.5; // diameter of circular excess on motors flange
h_motor_flange_excess = 2.5; // thickness of circular excess on motors flange
d_motor_screws = 3; // diameter of screws to fit in motors threads
hole_in_lid = false; // puts a hole in the lid for motor shaft (when motors shaft is too long)
motor_thread_distance=31; // shortest distance between two screw_holes on motor
// ############################
// ##### CACULATED VALUES #####
roller_angle=360/number_of_rollers; // roller offset angle
hose_wall_thickness = (d_hose_out-d_hose_in)/2; // wall thickness of hose
heigth_squeezed_hose = (d_hose_out*PI-hose_wall_thickness*4+hose_wall_thickness*2)/2+l_squeeze; //max width of the sueezed hose, used for caculating the heigth of rollers
d_hose_squeezed = hose_wall_thickness*2-l_squeeze; // thickness of squeezed hose
ballbearings_per_roller=ceil(heigth_squeezed_hose/h_bb); // number of ball bearings to stack per roller
echo("number of ball bearings to stack per roller", ballbearings_per_roller);
roller_height=h_bb*ballbearings_per_roller; // total heigth of roller
d_roller=d_bb_out; // outer diameter of roller
r_roller_shaft_position=r_bending_hose-d_roller/2-d_hose_squeezed; // radius of roller shaft position
d_motor_flange=motor_width*sqrt(2); // diameter of the motor flange, depends on motor width
d_case_top=r_bending_hose*2+wall_thickness*2; // diameter of case on top, also lid diameter
h_case=roller_height+clearance+h_disc; // total heigth of casing
d_disc=r_bending_hose*2-clearance*2; // diameter of disc (rotating part)
r_motor_flange_screws = d_motor_flange/2-4.5; //
// DISC
if(show_disc==true)
difference()
{
union(){
cylinder(d=d_disc,h=h_disc-h_br);
for(i=[0:1:number_of_rollers-1])
{
rotate(roller_angle*i,[0,0,1])
translate([r_roller_shaft_position,0,0])
cylinder(d=d_br,h=h_disc);
}
}
// motor shaft hole
difference()
{
translate([0,0,-1])
cylinder(d=d_motor_shaft,h=h_disc*2);
difference()
{
translate([d_motor_shaft*1.5-r_shaft_flattening,0,0])
cylinder(d=d_motor_shaft*2,h=h_disc);
translate([h_disc/2,-h_disc,0])
cube([h_disc*2,h_disc*2,h_disc*2]);
}
}
// holes for roller shafts
for(i=[0:1:number_of_rollers-1])
{
rotate(roller_angle*i,[0,0,1])
translate([r_roller_shaft_position,0,-1])
cylinder(d=d_bb_in,h=h_disc*2);
}
// rollers
%for(i=[0:1:number_of_rollers-1])
{
rotate(roller_angle*i,[0,0,1])
translate([r_roller_shaft_position,0,h_disc])
cylinder(d=d_roller,h=roller_height);
}
}
// CASE
if(show_case==true)
difference()
{
union()
{
// case
translate([0,0,0])
cylinder(d1=d_motor_flange,d2=d_case_top,h=h_case);
// hose outlet blocks
rotate(hose_angle,[0,0,1])
hull()
{
translate([r_bending_hose-d_hose_out/2,r_bending_hose,h_disc-d_hose_out/4])
radius_chamfer_cube(d_hose_out+d_hose_out/2,d_hose_out+wall_thickness,d_hose_out+d_hose_out/2,1,1);
translate([0,0,0])
translate([r_bending_hose-d_hose_out/2,r_bending_hose,0])
radius_chamfer_cube(d_hose_out+d_hose_out/2,1,1,0,1);
}
rotate(-hose_angle,[0,0,1])
hull()
{
translate([-(r_bending_hose-d_hose_out/2),r_bending_hose,h_disc-d_hose_out/4])
radius_chamfer_cube(d_hose_out+d_hose_out/2,d_hose_out+wall_thickness,d_hose_out+d_hose_out/2,1,1);
translate([0,0,0])
translate([-(r_bending_hose-d_hose_out/2),r_bending_hose,0])
radius_chamfer_cube(d_hose_out+d_hose_out/2,1,1,0,1);
}
}
// case inside
translate([0,0,-1])
cylinder(d=r_bending_hose*2,h=h_case+2);
// hose outlet borings
rotate(hose_angle,[0,0,1])
translate([r_bending_hose-d_hose_out/2,0,h_disc+d_hose_out/2])
rotate(-90,[1,0,0])
cylinder(d=d_hose_out,h=d_disc);
rotate(-hose_angle,[0,0,1])
translate([-r_bending_hose+d_hose_out/2,0,h_disc+d_hose_out/2])
rotate(-90,[1,0,0])
cylinder(d=d_hose_out,h=d_disc);
// lid screw borings (for thread cutting)
for(i=[3:1:6])
{
rotate((360/6)*i+0,[0,0,1])
translate([r_bending_hose+3,0,h_case-11])
cylinder(d=d_lid_screw_borehole,h=20);
}
color("red")
%for(i=[3:1:6])
{
rotate((360/6)*i+0,[0,0,1])
translate([r_bending_hose+3,0,h_case-11])
cylinder(d=d_lid_screw_borehole,h=11);
}
// motor flange screw borings (for thread cutting)
for(i=[0:1:4])
{
rotate(90*i,[0,0,1])
translate([r_motor_flange_screws,0,-2])
cylinder(d=3.25,h=10);
}
color("green")
%for(i=[0:1:4])
{
rotate(90*i,[0,0,1])
translate([r_motor_flange_screws,0,-2])
cylinder(d=3.25,h=10);
}
}
// LID
if(show_lid==true)
translate([0,0,1]) // offset to separate objects
difference()
{
// lid
translate([0,0,h_case])
cylinder(d=d_case_top,h=lid_thickness);
// lid screw holes
for(i=[3:1:6])
{
rotate((360/6)*i+0,[0,0,1])
translate([r_bending_hose+3,0,h_case+lid_thickness])
screw_hole(d_lid_screw,lid_thickness+4,6,2,false);
}
// hole for motor shaft in lid
if(hole_in_lid==true)
{
translate([0,0,h_case-1])
cylinder(d=d_motor_shaft+clearance,h=lid_thickness*2);
}
}
// MOTOR FLANGE
if(show_motor_flange==true)
translate([0,0,-1]) // offset to separate objects
difference()
{
union()
{
// motor flange
translate([0,0,-(wall_thickness)])
cylinder(d=d_motor_flange,h=wall_thickness);
}
// recess for disc
translate([0,0,-clearance])
cylinder(d=d_disc+1,h=h_disc);
//steppermotor
translate([0,0,-motor_width-wall_thickness])
%radius_chamfer_cube(motor_width,motor_width,motor_width,4,1);
// screw holes for attaching the motor flange to the case
for(i=[0:1:4])
{
rotate(90*i,[0,0,1])
translate([r_motor_flange_screws,0,-wall_thickness])
//cylinder(d=d_lid_screw_borehole,h=10);
rotate(180,[1,0,0])
screw_hole(4,wall_thickness+4,8,2,false);
}
// screw holes for attaching the motor to the motor flange
translate([0,0,0])
for(i=[0:1:3])
{
rotate(90*i,[0,0,1])
translate([motor_thread_distance/2,motor_thread_distance/2,0])
screw_hole(d_motor_screws,wall_thickness+4,6,2,false);
}
// recess for excess on stepper motor
translate([0,0,-(wall_thickness)])
cylinder(d=d_motor_flange_excess,h=h_motor_flange_excess);
// hole for motor shaft
translate([0,0,-(wall_thickness)])
cylinder(d=d_motor_shaft+clearance,h=wall_thickness);
}
// MODULES USED
module screw_hole(diameter,length,head_diameter,recess_length,flathead)
{
head_length=head_diameter/2-diameter/2;
translate([0,0,-length])
{
cylinder(d=diameter,h=length);
if(flathead==false)
{
translate([0,0,length-head_length])
cylinder(d1=diameter,d2=head_diameter,h=head_length);
}
else
{
translate([0,0,length-head_length])
cylinder(d=head_diameter,h=head_length);
}
if(recess_length > 0)
{
translate([0,0,length])
cylinder(d=head_diameter,h=recess_length);
}
}
}
module radius_chamfer_cube(x,y,z,r,center)
{
if(center == 0)
{
if(r>0)
{
translate([r,r,0])
minkowski()
{
cube([x-2*r,y-2*r,z/2]);
cylinder(r=r,h=z/2);
}
}
else
{
cube([x,y,z]);
}
}
if(center == 1)
{
translate([-x/2,-y/2,0])
{
if(r>0)
{
translate([r,r,0])
minkowski()
{
cube([x-2*r,y-2*r,z/2]);
cylinder(r=r,h=z/2);
}
}
else
{
cube([x,y,z]);
}
}
}
if(center == 2)
{
translate([-x/2,-y/2,-z/2])
{
if(r>0)
{
translate([r,r,0])
minkowski()
{
cube([x-2*r,y-2*r,z/2]);
cylinder(r=r,h=z/2);
}
}
else
{
cube([x,y,z]);
}
}
}
}