Compare commits

...

6 Commits

@ -18,11 +18,16 @@
====================================================================================================
"""
## channel.exclusiveclose(
import socket
import struct
import math
import time
import numpy as np
from matplotlib import pyplot
echoCmd = 0
def instrConnect(mySocket, myAddress, myPort, timeOut, doReset, doIdQuery):
@ -63,100 +68,136 @@ def Write_Data(output_data_path, dataStr):
return
def Configure_4WO_Scan(s, scan_channels, scan_count):
def Configure_Backplane(s):
instrSend(s, "reset()")
instrSend(s, "dmm.func = \"fourwireohms\"")
#instrSend(s, "dmm.nplc = 0.1")
instrSend(s, "dmm.autorange = dmm.OFF")
instrSend(s, "dmm.range = 100")
instrSend(s, 'dmm.setconfig("slot1", "fourwireohms")')
instrSend(s, "scan.create(\"{0}\")".format(scan_channels)) # Create the scan
instrSend(s, "scan.scancount = {0}".format(scan_count)) # Set the Scan Count
instrSend(s, "reading_buffer = dmm.makebuffer(scan.scancount * scan.stepcount)") # Configure Buffer
instrSend(s, "scan.background(reading_buffer)") # Execute Scan and save to buffer
return
## crossover connection is made on backplane 3 & 4
instrSend(s, 'channel.setbackplane("1001:1030", "1913")')
instrSend(s, 'channel.setbackplane("1031:1060", "1924")')
def Configure_TWO_Scan(s, scan_channels, scan_count):
instrSend(s, "reset()") # Reset
instrSend(s, "dmm.func = dmm.TWO_WIRE_OHMS") # Set measurement function
instrSend(s, "dmm.nplc=1") # Set NPLC
instrSend(s, 'channel.setbackplane("2001:2030", "2913")')
instrSend(s, 'channel.setbackplane("2031:2060", "2924")')
instrSend(s, "dmm.autorange = dmm.OFF")
instrSend(s, "dmm.range = 100")
instrSend(s, "dmm.autodelay = dmm.ON") # Ensure Auto Delay is enabled
instrSend(s, "dmm.autozero = dmm.ON") # Enable Auto Zero
instrSend(s, 'channel.setbackplane("3001:3030", "3913")')
instrSend(s, 'channel.setbackplane("3031:3060", "3924")')
instrSend(s, "dmm.configure.set(\"test\")") # Save Configuration
instrSend(s, "dmm.setconfig(\"{0}\",\"test\")".format(scan_channels)) # Assign configuration to channels
instrSend(s, "channel.connectrule = channel.BREAK_BEFORE_MAKE")
#if scan_interval > 0.1:
# # Establish the settings that will apply the interval between the start of scans
# instrSend(s, "trigger.timer[1].reset()") # Ensure the timer gets to a known relative time start point
# instrSend(s, "trigger.timer[1].count = 0") # No reapeating timer events
# instrSend(s, "trigger.timer[1].delay = {0}".format(scan_interval)) # Apply the anticipated scan interval
# instrSend(s, "trigger.timer[1].stimulus = scan.trigger.EVENT_MEASURE_COMP") #
# instrSend(s, "trigger.timer[1].passthrough = false") # Trigger only initiates the delay
# instrSend(s, "trigger.blender[1].reset()") # Configure the blender stimulus...
# instrSend(s, "trigger.blender[1].orenable = true") # ... for OR'ing operation
# instrSend(s, "trigger.blender[1].stimulus[1] = trigger.timer[1].EVENT_ID") # ... to respond/notify upon a timer event
# instrSend(s, "trigger.blender[1].stimulus[2] = scan.trigger.EVENT_SCAN_READY") # ... or when then scan is ready (configured)
# instrSend(s, "scan.trigger.arm.stimulus = trigger.blender[1].EVENT_ID") # Key triggering off of the blender event
instrSend(s, "scan.create(\"{0}\")".format(scan_channels)) # Create the scan
instrSend(s, "scan.scancount = {0}".format(scan_count)) # Set the Scan Count
instrSend(s, "reading_buffer = dmm.makebuffer(scan.scancount * scan.stepcount)") # Configure Buffer
instrSend(s, "scan.background(reading_buffer)") # Execute Scan and save to buffer
return
def diff_4W_mess(s, ch1, ch2):
instrSend(s, 'channel.exclusiveclose("{}")'.format(ch1))
instrSend(s, 'channel.close("{}")'.format(ch2))
#print(instrQuery(s, "print(dmm.measure())", 64)[:-1], end='\t')
return float(instrQuery(s, "print(dmm.measure())", 64))
def get_mapped(arr):
map = [
(1,9),
(1,1),
(3,8),
(1,4),
(3,6),
(2,4),
(1,7),
(3,10),
(1,8),
(2,10),
(2,8),
(3,4),
(2,7),
(1,5),
(3,7),
(2,1),
(2,6),
(3,3),
(1,6),
(2,3),
(2,9),
(1,3),
(3,9),
(3,2),
(3,5),
(2,2),
(2,5),
(1,2),
(1,10),
(3,1),
(4,7),
(5,8),
(4,6),
(6,2),
(5,5),
(6,3),
(4,1),
(5,7),
(4,4),
(5,6),
(4,5),
(6,4),
(4,2),
(6,5),
(4,3),
(5,9),
(5,4),
(6,1),
(5,3),
(6,6),
(4,8),
(6,7),
(4,9),
(6,8),
(5,2),
(6,9),
(5,1),
(6,10),
(4,10),
(5,10),
(7,2),
(7,10),
(9,3),
(7,7),
(9,5),
(8,7),
(7,4),
(9,1),
(7,3),
(8,1),
(8,3),
(9,7),
(8,4),
(7,6),
(9,4),
(8,10),
(8,5),
(9,8),
(7,5),
(8,8),
(8,2),
(7,8),
(9,2),
(9,9),
(9,6),
(8,9),
(8,6),
(7,9),
(7,1),
(9,10)
]
out = np.zeros(shape=(9, 10))
for i in range(0,90):
x, y = map[i]
out[x-1][y-1] = arr[i]
return out
def Configure_DCV_Scan(s, scan_channels, dcv_range, use_input_divider, scan_count, scan_interval):
instrSend(s, "reset()") # Reset
instrSend(s, "dmm.func = dmm.DC_VOLTS") # Set measurement function
instrSend(s, "dmm.nplc=1") # Set NPLC
if dcv_range < 0.001: # Set Range
instrSend(s, "dmm.autorange = dmm.ON")
else:
instrSend(s, "dmm.autorange = dmm.OFF")
instrSend(s, "dmm.range = {0}".format(dcv_range))
instrSend(s, "dmm.autodelay = dmm.ON") # Ensure Auto Delay is enabled
instrSend(s, "dmm.autozero = dmm.ON") # Enable Auto Zero
if use_input_divider == 1: # Apply the 10M input divider as needed
instrSend(s, "dmm.inputdivider = dmm.ON")
else:
instrSend(s, "dmm.inputdivider = dmm.OFF")
instrSend(s, "dmm.configure.set(\"mydcvolts\")") # Save Configuration
instrSend(s, "dmm.setconfig(\"{0}\",\"mydcvolts\")".format(scan_channels)) # Assign configuration to channels
instrSend(s, "channel.connectrule = channel.BREAK_BEFORE_MAKE")
if scan_interval > 0.1:
# Establish the settings that will apply the interval between the start of scans
instrSend(s, "trigger.timer[1].reset()") # Ensure the timer gets to a known relative time start point
instrSend(s, "trigger.timer[1].count = 0") # No reapeating timer events
instrSend(s, "trigger.timer[1].delay = {0}".format(scan_interval)) # Apply the anticipated scan interval
instrSend(s, "trigger.timer[1].stimulus = scan.trigger.EVENT_MEASURE_COMP") #
instrSend(s, "trigger.timer[1].passthrough = false") # Trigger only initiates the delay
instrSend(s, "trigger.blender[1].reset()") # Configure the blender stimulus...
instrSend(s, "trigger.blender[1].orenable = true") # ... for OR'ing operation
instrSend(s, "trigger.blender[1].stimulus[1] = trigger.timer[1].EVENT_ID") # ... to respond/notify upon a timer event
instrSend(s, "trigger.blender[1].stimulus[2] = scan.trigger.EVENT_SCAN_READY") # ... or when then scan is ready (configured)
instrSend(s, "scan.trigger.arm.stimulus = trigger.blender[1].EVENT_ID") # Key triggering off of the blender event
instrSend(s, "scan.create(\"{0}\")".format(scan_channels)) # Create the scan
instrSend(s, "scan.scancount = {0}".format(scan_count)) # Set the Scan Count
instrSend(s, "reading_buffer = dmm.makebuffer(scan.scancount * scan.stepcount)") # Configure Buffer
instrSend(s, "scan.background(reading_buffer)") # Execute Scan and save to buffer
return
""" ==============================================================================================================
MAIN CODE STARTS HERE
@ -171,48 +212,32 @@ output_data_path = time.strftime("data_%Y-%m-%d_%H-%M-%S.csv") # This is the o
s = socket.socket() # Establish a TCP/IP socket object
# Open the socket connection
instrConnect(s, ip_address, my_port, 20000, 1, 1)
instrConnect(s, ip_address, my_port, 20000, 0, 0)
t1 = time.time() # Start the timer...
scanchannels = "1015" # Define the channels to scan here. Note the following format possibilities...
# 1001:10060 - All channels starting with 1001 and ending with 1060
# 1001,1002,1004 - Just channels 1001, 1002, and 1004
# 1007:1010,1021,1031:1040 - Channels 1007 through 1010, channel 1021, and channels 1031 through 1040
rangedcv = 10 # Define the DCV range. If auto-ranging is desired, pass 0
useinputdivider = 1 # 1 = True; 0 = False
scancount = 3 # Number of times to run the scan
scaninterval = 1 # Delay between the start of each scan (if needed)
#Configure_DCV_Scan(s, scanchannels, rangedcv, useinputdivider, scancount, scaninterval)
#Configure_TWO_Scan(s, scanchannels, scancount)
Configure_4WO_Scan(s, scanchannels, scancount)
expectedCnt = 30
channelcount = int(float(instrQuery(s, "print(scan.stepcount)", 64)))
startindex = 1
endindex = channelcount
total_readings_count = 0
target = channelcount * scancount
cntr = 1
# Extract readings while the scan is running....
while(total_readings_count < target):
vals = int(float(instrQuery(s, "print(reading_buffer.n)", 16)))
while(vals < endindex):
time.sleep(0.1)
vals = int(float(instrQuery(s, "print(reading_buffer.n)", 16)))
data_string = instrQuery(s, "printbuffer({},{}, reading_buffer.readings)".format(startindex, endindex), 2048)
print("Scan {0:4} : {1}".format(cntr, data_string))
Write_Data(output_data_path, data_string)
startindex += channelcount
endindex += channelcount
total_readings_count += channelcount
cntr += 1
Configure_Backplane(s)
a = np.zeros(shape=(90, 90))
b = np.zeros(shape=(9, 10))
pyplot.ion()
fig, ax = pyplot.subplots()
axim = ax.imshow(a, interpolation='nearest', cmap='gray', vmin=0, vmax=30)
x = 0
y = 0
print()
for ch1 in [*range(1001, 1031)] + [*range(2001, 2031)] + [*range(3001, 3031)]:
for ch2 in [*range(1031, 1061)] + [*range(2031, 2061)] + [*range(3031, 3061)]:
a[x][y]=diff_4W_mess(s, ch1, ch2)
b=get_mapped(a[x])
axim.set_data(b)
fig.canvas.flush_events()
y+=1
y=0
x+=1
# Close the socket connection
instrDisconnect(s)

Loading…
Cancel
Save