""" ============================================================= *** modified 2022 - four wire resistance mode *** Institut f. Konstruktionsrechnik, Eggert Jung ============================================================= """ """ ================================================================================ *** Copyright 2019 Tektronix, Inc. *** *** See www.tek.com/sample-license for licensing terms. *** ================================================================================ """ """ ==================================================================================================== This example configures a series of channels within the 3706A mainframe for DCV measurement scanning. Additionally, a log file is created on a USB drive connected to the front port of the meter and writes the measurement information after each scan. ==================================================================================================== """ ## channel.exclusiveclose( import socket import struct import math import time echoCmd = 0 def instrConnect(mySocket, myAddress, myPort, timeOut, doReset, doIdQuery): mySocket.connect((myAddress, myPort)) # input to connect must be a tuple mySocket.settimeout(timeOut) if doReset == 1: instrSend(mySocket, "reset()") if doIdQuery == 1: tmpId = instrQuery(mySocket, "*IDN?", 100) print(tmpId) return mySocket def instrDisconnect(mySocket): mySocket.close() return def instrSend(mySocket, cmd): if echoCmd == 1: print(cmd) cmd = "{0}\n".format(cmd) mySocket.send(cmd.encode()) return def instrQuery(mySocket, cmd, rcvSize): instrSend(mySocket, cmd) time.sleep(0.1) return mySocket.recv(rcvSize).decode() def Write_Data(output_data_path, dataStr): # This function writes the floating point data to the # target file. #for f in floats: ofile = open(output_data_path, "a") # append the target data dataStr = "{0}".format(dataStr) ofile.write(dataStr) ofile.close() # Close the data file. return def Configure_4WO_Scan(s, scan_channels, scan_count): instrSend(s, "reset()") instrSend(s, "dmm.func = \"fourwireohms\"") instrSend(s, "dmm.autorange = dmm.OFF") instrSend(s, "dmm.range = 100") # instrSend(s, 'dmm.setconfig("slot1", "fourwireohms")') # excluveclose instrSend(s, 'channel.setbackplane("1001:1030", "1913")') instrSend(s, 'channel.setbackplane("1031:1060", "1924")') instrSend(s, 'channel.open("allslots")') instrSend(s, 'channel.close("1015")') instrSend(s, 'channel.close("1037")') instrSend(s, 'closedSlot5 = channel.getclose("slot1")') instrQuery(s, "print(closedSlot5)", 64) instrSend(s, "dmm.measure()") # instrQuery(s, "print(dmm.measure())", 64) #instrSend(s, "scan.create(\"{0}\")".format(scan_channels)) # Create the scan #instrSend(s, "scan.scancount = {0}".format(scan_count)) # Set the Scan Count #instrSend(s, "reading_buffer = dmm.makebuffer(scan.scancount * scan.stepcount)") # Configure Buffer #instrSend(s, "scan.background(reading_buffer)") # Execute Scan and save to buffer return def Configure_TWO_Scan(s, scan_channels, scan_count): instrSend(s, "reset()") # Reset instrSend(s, "dmm.func = dmm.TWO_WIRE_OHMS") # Set measurement function instrSend(s, "dmm.nplc=1") # Set NPLC instrSend(s, "dmm.autorange = dmm.OFF") instrSend(s, "dmm.range = 100") instrSend(s, "dmm.autodelay = dmm.ON") # Ensure Auto Delay is enabled instrSend(s, "dmm.autozero = dmm.ON") # Enable Auto Zero instrSend(s, "dmm.configure.set(\"test\")") # Save Configuration instrSend(s, "dmm.setconfig(\"{0}\",\"test\")".format(scan_channels)) # Assign configuration to channels instrSend(s, "channel.connectrule = channel.BREAK_BEFORE_MAKE") #if scan_interval > 0.1: # # Establish the settings that will apply the interval between the start of scans # instrSend(s, "trigger.timer[1].reset()") # Ensure the timer gets to a known relative time start point # instrSend(s, "trigger.timer[1].count = 0") # No reapeating timer events # instrSend(s, "trigger.timer[1].delay = {0}".format(scan_interval)) # Apply the anticipated scan interval # instrSend(s, "trigger.timer[1].stimulus = scan.trigger.EVENT_MEASURE_COMP") # # instrSend(s, "trigger.timer[1].passthrough = false") # Trigger only initiates the delay # instrSend(s, "trigger.blender[1].reset()") # Configure the blender stimulus... # instrSend(s, "trigger.blender[1].orenable = true") # ... for OR'ing operation # instrSend(s, "trigger.blender[1].stimulus[1] = trigger.timer[1].EVENT_ID") # ... to respond/notify upon a timer event # instrSend(s, "trigger.blender[1].stimulus[2] = scan.trigger.EVENT_SCAN_READY") # ... or when then scan is ready (configured) # instrSend(s, "scan.trigger.arm.stimulus = trigger.blender[1].EVENT_ID") # Key triggering off of the blender event instrSend(s, "scan.create(\"{0}\")".format(scan_channels)) # Create the scan instrSend(s, "scan.scancount = {0}".format(scan_count)) # Set the Scan Count instrSend(s, "reading_buffer = dmm.makebuffer(scan.scancount * scan.stepcount)") # Configure Buffer instrSend(s, "scan.background(reading_buffer)") # Execute Scan and save to buffer return def Configure_DCV_Scan(s, scan_channels, dcv_range, use_input_divider, scan_count, scan_interval): instrSend(s, "reset()") # Reset instrSend(s, "dmm.func = dmm.DC_VOLTS") # Set measurement function instrSend(s, "dmm.nplc=1") # Set NPLC if dcv_range < 0.001: # Set Range instrSend(s, "dmm.autorange = dmm.ON") else: instrSend(s, "dmm.autorange = dmm.OFF") instrSend(s, "dmm.range = {0}".format(dcv_range)) instrSend(s, "dmm.autodelay = dmm.ON") # Ensure Auto Delay is enabled instrSend(s, "dmm.autozero = dmm.ON") # Enable Auto Zero if use_input_divider == 1: # Apply the 10M input divider as needed instrSend(s, "dmm.inputdivider = dmm.ON") else: instrSend(s, "dmm.inputdivider = dmm.OFF") instrSend(s, "dmm.configure.set(\"mydcvolts\")") # Save Configuration instrSend(s, "dmm.setconfig(\"{0}\",\"mydcvolts\")".format(scan_channels)) # Assign configuration to channels instrSend(s, "channel.connectrule = channel.BREAK_BEFORE_MAKE") if scan_interval > 0.1: # Establish the settings that will apply the interval between the start of scans instrSend(s, "trigger.timer[1].reset()") # Ensure the timer gets to a known relative time start point instrSend(s, "trigger.timer[1].count = 0") # No reapeating timer events instrSend(s, "trigger.timer[1].delay = {0}".format(scan_interval)) # Apply the anticipated scan interval instrSend(s, "trigger.timer[1].stimulus = scan.trigger.EVENT_MEASURE_COMP") # instrSend(s, "trigger.timer[1].passthrough = false") # Trigger only initiates the delay instrSend(s, "trigger.blender[1].reset()") # Configure the blender stimulus... instrSend(s, "trigger.blender[1].orenable = true") # ... for OR'ing operation instrSend(s, "trigger.blender[1].stimulus[1] = trigger.timer[1].EVENT_ID") # ... to respond/notify upon a timer event instrSend(s, "trigger.blender[1].stimulus[2] = scan.trigger.EVENT_SCAN_READY") # ... or when then scan is ready (configured) instrSend(s, "scan.trigger.arm.stimulus = trigger.blender[1].EVENT_ID") # Key triggering off of the blender event instrSend(s, "scan.create(\"{0}\")".format(scan_channels)) # Create the scan instrSend(s, "scan.scancount = {0}".format(scan_count)) # Set the Scan Count instrSend(s, "reading_buffer = dmm.makebuffer(scan.scancount * scan.stepcount)") # Configure Buffer instrSend(s, "scan.background(reading_buffer)") # Execute Scan and save to buffer return """ ============================================================================================================== MAIN CODE STARTS HERE ============================================================================================================== """ ip_address = "192.168.0.53" # Place your instrument's IP address here. my_port = 5025 output_data_path = time.strftime("data_%Y-%m-%d_%H-%M-%S.csv") # This is the output file that is created which # will hold your readings provided in ASCII # format in a text file. s = socket.socket() # Establish a TCP/IP socket object # Open the socket connection instrConnect(s, ip_address, my_port, 20000, 1, 1) t1 = time.time() # Start the timer... scanchannels = "1015" # Define the channels to scan here. Note the following format possibilities... # 1001:10060 - All channels starting with 1001 and ending with 1060 # 1001,1002,1004 - Just channels 1001, 1002, and 1004 # 1007:1010,1021,1031:1040 - Channels 1007 through 1010, channel 1021, and channels 1031 through 1040 rangedcv = 10 # Define the DCV range. If auto-ranging is desired, pass 0 useinputdivider = 1 # 1 = True; 0 = False scancount = 3 # Number of times to run the scan scaninterval = 1 # Delay between the start of each scan (if needed) #Configure_DCV_Scan(s, scanchannels, rangedcv, useinputdivider, scancount, scaninterval) #Configure_TWO_Scan(s, scanchannels, scancount) Configure_4WO_Scan(s, scanchannels, scancount) #expectedCnt = 30 #channelcount = int(float(instrQuery(s, "print(scan.stepcount)", 64))) #startindex = 1 #endindex = channelcount #total_readings_count = 0 #target = channelcount * scancount #cntr = 1 ## Extract readings while the scan is running.... #while(total_readings_count < target): # vals = int(float(instrQuery(s, "print(reading_buffer.n)", 16))) # # while(vals < endindex): # time.sleep(0.1) # vals = int(float(instrQuery(s, "print(reading_buffer.n)", 16))) # # data_string = instrQuery(s, "printbuffer({},{}, reading_buffer.readings)".format(startindex, endindex), 2048) # print("Scan {0:4} : {1}".format(cntr, data_string)) # Write_Data(output_data_path, data_string) # startindex += channelcount # endindex += channelcount # total_readings_count += channelcount # cntr += 1 # Close the socket connection instrDisconnect(s) t2 = time.time() # Notify the user of completion and the data streaming rate achieved. print("done") print("Total Time Elapsed: {0:.3f} s".format(t2-t1)) input("Press Enter to continue...") exit()