
5 - 1

 der klassische Systementwurf verwendet das Wasserfallmodell
(Waterfall Model)

 das Wasserfallmodell betrachtet den Entwurf als Sequenz von
Implementierungsschritten (Top-Down-Design)

 es fehlt ein systematischer Ansatz für Integration und Test
 wichtig für komplexe Systeme und für Zulieferketten (Supply Chains)

5. Systematische Integration
5.1 Entwurfsprozess eingebetteter Systeme

requirements
definition

specification

architecture design

function implementation

5 - 2

Entwurfsprozess – V-Model

requirements

systems design

module design

function
impl.

function
test

module I&T

system I&T

acceptance test

integration
&test (I&T)

imple-
mentation

waterfall

test and integration description

test and verification results

5 - 3

V-Model

 das V-Model erweitert das Wasserfallmodell

 durch einen umfassenden Test-/Verifikations- und Integrationsprozess

 spiegelt den Implementierungsprozess des Wasserfallmodells

 das V-Model erlaubt die systematische Einbettung von
Entwurfsprozess und Entwurfsergebnis (“Artefact”)
 Entwurf von Software und Plattform werden Teil des Entwurfs eines

eingebetteten Systems

 Entwurf eines eingebettete Systems wird Teil des Entwurfs eines
Fahrzeugs, eines Flugzeugs, einer Industrieanlage oder eines Gebäudes

 das V-Modell ist De-Facto-Standard im heutigen Systementwurf

5 - 4

Einbettung von Entwurfsprozess und Artefact im V-Model

requirements

systems design

module design

function
impl.

function
test

module I&T

system I&T

acceptance test

Integration
&Test (I&T)

Imple-
mentation

OEM

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

2nd tier
suppliers

OEM

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

1st tier
suppliers

2nd tier
suppliers

test and integration description

test and verification results

5 - 5

 zwischen je zwei Ebenen gibt es einen Übergang zwischen
Entwurfsteams und Verantwortlichkeiten

 auf jeder Ebene werden ausreichende Informationen benötigt, um
das Entwurfsergebnis (Artefact) unabhängig überprüfen zu
können

 favorisiert werden formalisierte Modelle
 abstrahieren von unnötigen Details

 verringern Unklarheiten in der
Implementierung

 erlauben unabhängigen Test,
Verifikation und Funktionsvalidierung

 unterstützen die Nutzung von Verträgen
(Contracting)

→ modellgestützter Entwurf

V Model und Modellgestützter Entwurf

OEM

ECU - Supplier

HW Component - Supplier
SW Component - Supplier

specs ECUs

specs SoCs

5 - 6

Anforderungen an eine systematische Integration

 die systematische Integration basiert auf einer modularen und
vorhersagbaren Implementierung und Modellierung der Funktion

 angestrebt werden zwei Eigenschaften
 Composability

Bei der Integration behält eine Funktion/ein Modul das in Modellen
beschriebene Verhalten unverändert bei

 Compositionality
Das aus der Integration resultierende Verhalten ist aus den Modellen der
einzelnen Funktionen/Module ohne weitere Kenntnisse formal ableitbar

 beide Eigenschaften ermöglichen eine modellgestützte modulare
Integration
 für Composability genügt die Kenntnis der abstrakten Funktion und ihrer

Schnittstellen, Compositionality erfordert zusätzlich Methoden zur
Komposition des Verhaltens

5 - 7

Voraussetzungen für Composability und Compositionality

 Voraussetzung sind stets geeignete Modelle und geeignete
Plattformen

 beide Eigenschaften beziehen sich auf bestimmte
Entwurfsaspekte und deren Modelle

 Entwurfsaspekte bei der Integration eingebetteter Systeme
 Integration der logischen Funktion

 Trennung über Isolation und Steuerung der Zugriffe auf Daten und
Rechenschritte (Kap. 4)

 Ziel: Composability; Compositionality bei Abhängigkeit der Funktionen

 Problem der Funktionsentwicklung - in der VL nicht tiefer betrachtet

 Beherrschung des Zeitverhaltens bei der Integration (Kap.4):

 Ziel: Composability oder Compositionality

 stark von der Plattform beeinflusst - Fokus der VL

5 - 8

5.2. Zeitverhalten – Grundlagen

was uns interessiert:

 Wie kann das Zeitverhalten kontrolliert werden?
 Scheduling

 Kann die Plattform die Anwendungen mit dem geforderten
Zeitverhalten ausführen?
 Schedulability

 Beeinflusst das Zeitverhalten die Funktion?
 Cause-effect Chains (Wirkketten)

(in VL nur skizziert)

5 - 9

Entwurfsprozess - Wo wird das Zeitverhalten benötigt?

 in den frühen Phasen des Entwurfs
 Ziel: Auslegung der Vernetzung und des physikalischen

Aufbaus

 Datenquellen: Funktionsarchitektur, Schätzung, frühere
Implementierung

 Problemstellung: oft noch Änderungen unterworfen

 im Modulentwurf
 Ziel: Strukturierung der Plattformkomponenten, Lastverteilung (Multicore),

 Datenquellen: Funktionsarchitektur, frühere Implementierung, neue
Implementierung, Messung, Schätzung

 Problemstellung: Daten oft nur teilweise bekannt

 bei Integration und Test des Gesamtsystems
 Ziel: Adaption an Plattform und Physik, Überprüfung der Anforderungen

und der Implementierung

 Datenquellen: Modelle, Messungen, Systemtests

 Problemstellung: Daten oft nur teilweise bekannt, Aufwand

5 - 10

Problematik des Zeitverhaltens

 grundsätzlich ist die Bestimmung sehr aufwendig
 da Ausführungszeiten und – häufigkeit von der Funktion und den Daten

bestimmt werden, ist der Zustandsraum der Ausführung prinzipiell so
groß wie der der Funktion

 hinzu kommt der Zustandsraum der Plattform – Architektur, Taktung, …

 Vorhersagbarkeit der Plattform wird mit komplizierten
Architekturen schwieriger
 Architekturen i.d.R. nicht auf Vorhersagbarkeit optimiert, sondern auf

Performanz

 wieviel muss man wissen, um die interessanten Fragen zu
beantworten
 wieviel Vorhersagbarkeit benötigen wir?

 Was ist eine zulässige und sinnvolle Abstraktion?

5 - 11

Bestimmung des Zeitverhaltens

 prinzipiell mit allen bekannten Verifikationsverfahren
Test, Simulation, Prototypen, formale Analysen
 grundsätzlich sehr aufwendig und generell riskant wg. Zustandsraum und

fehlenden Daten

 Modelle in frühen Phasen oft nicht ausführbar – keine Simulation oder
Test möglich

 Formale Analysen problematisch wg. Komplexität und Vollständigkeit
der Modelle und Methoden

→ benötigen sinnvolle und zulässige Abstraktion

5.2 Ereignismodelle und Last

 die Aktivierung von Tasks erfolgt zeitgesteuert oder ereignisgesteuert

 in beiden Fälle kann die Aktivierung von Tasks durch eine Sequenz
einzelner Ereignisse in der Zeit modelliert werden

 auch Basis der Simulation

 für formale Betrachtungen ist es günstiger, von einzelnen Ereignissen
zu abstrahieren und die Eigenschaften der (unendlichen)
Ereignissequenz zu betrachten

 eine solche Sequenz wird als Ereignisstrom (event stream) bezeichnet

 er wird mit abstrakten Ereignis(strom-)modellen beschrieben

5- 12

activation functions - example

S

C

B4

B2B1 B3
event
source

sample
clock

event activated

time activated

event
model

event activated

Abstrakte Ereignismodelle - periodische Ereignisse

 dies ist das wichtigste Ereignismodell, das bei allen periodischen
Aktivierungen zeitaktivierter Tasks auftritt (Kap. 3)

 die Sequenz ist prinzipiell unendlich

 Bespiele

 periodische Abtastung: SDF, Simulink, …

 periodisches Polling (Kap. 3)

tei typisch durch Timer erzeugt

tPtP

te0 te1 te2

Pee

Pee

titt

ttt

i

ii






0

1

5- 13

 der Jitter j verschiebt den Ereigniszeitpunkt um maximal eine Periode

 Beispiele

pe

periodische
Ereignisse

ce

• Ursachen
• datenabhängige Ausführungszeiten
• Schedulingeffekte

periodische
Ereignisse
mit Jitter

5- 14

Periodische Ereignisse mit Jitter

P

PeePe

tJ

Jtitttit
i




00

tPtP

te0 te1 te2j

Periodische Ereignisse mit Jitter und Burst

 der Jitter kann zu zwei beliebig dicht aufeinanderfolgenden Ereignissen
führen

 wird der Jitter größer als die Periode, J > tP können sich Bündel von
Ereignissen mit beliebiger Dichte bilden (“Burst”)

 die tatsächliche Last wird dann durch die Plattformeigneschaft
begrenzt, etwa die Zahl der maximal übertragbaren Telegramme oder
der maximal ausführbaren Tasks

 diese Begrenzung kann durch die maximale Ereignisdichte, D, erfasst
werden

D

te0 te1 te3

5- 15

Dtt

Jtitttit

ii

i

ee

PeePe





1

00

Nicht-periodische Ereignismodelle

 nicht-periodische Ereignisse lassen sich weniger gut beschreiben,
da sie oft keinem regelmäßigen Muster folgen

 um die auftretende Last beschreiben zu können, führt man auch
hier einen minimalen Ereignisabstand D ein

→ sporadisches Ereignismodell

 Beispiele

 Eintreffen von Paketen

 Eingaben einer Benutzerschnittstelle

 Fehlermeldungen

 Kommunikation reaktiver Systeme

 ...

reaktive Systeme

5- 16

Dtt
ii ee 

1

D

te1 te2

5 - 17

Zusammenfassung Standard-Ereignismodelle

 die klassischen Standard-Ereignismodelle werden zu einem
allgemeinen (P,J,D) – Modell zusammengefasst
 extrem kompakte Abstraktion einer unendlichen Sequenz

 sehr verbreitet genutzt im Gebiet der Echtzeitsysteme
 vereinfacht die Analysen

 erlaubt Garantien (später)

 sinnvolle und zulässige Abstraktion

 aber nur beschränkt aussagekräftig
 vor allem bei sporadischen Anteilen

 oder Kombination mehrerer periodischer Ereignisströme (Kommunikation)

 dann wird das Modell zu konservativ für einen effizienten Entwurf

 daher wurde in der Kommunikationstechnik ein mächtigeres
Modell eingeführt
 genauere Beschreibung mit Arrival Curves

 heute auch für eingebettete Systeme verwendet

Arrival Curves des Network Calculus

 der Network Calculus transformiert eine Ereignissequenz aus dem
Raum der Zeit t in einen Raum über Zeitintervalle t

 damit wird von zeitlichen Abhängigkeiten zwischen verschiedenen
Ereignissströmen abstrahiert

 konkret werden zwei Funktionen gebildet

 η+(∆t) maximale Zahl aktivierender Ereignisse, die in einem
Zeitfenster der Länge ∆t auftreten können

 η-(∆t) minimale Zahl aktivierender Ereignisse, die in einem
Zeitfenster der Länge ∆t auftreten können

 beide Funktionen erreichen unendliche Werte für t  
 zur Nutzung durch periodische Fortsetzung approximiert

 deckt das (P, J, D)-Modell ab

 der Network Calculus liefert eine abstrakte Algebra, mit der das
Zeitverhalten für viele Fälle im t – Raum approximiert werden kann

 verwenden nur einige der Eigenschaften, da wir Verfahren in t und in
t kombinieren

5- 18

Ableitung Arrival Curves - Beispiel

t [ms]

Ereignisse

maximale/minimal ein-
treffende Ereignisse in
einem beliebigen Intervall
der Länge 2.5 ms

2.5

Ereignisse

t [ms] 2.5

Zahl Ereignisse in
t=[0 .. 2.5] ms

η-(∆t)

η+(∆t)

t

t

Ereignisstrom

Arrival Curve

Praktische Eigenschaft der Arrival Curves

 Maximale Ereigniskurven sind subadditiv
η+(∆t1 + ∆t2) ≤ η+(∆t1) + η+(∆t2)

 eine periodische Wiederholung eines Stücks von η+ dominiert damit die
reale unendliche Kurve

 Minimale Ereigniskurven sind superadditiv
η-(∆t1 + ∆t2) ≥ η-(∆t1) + η-(∆t2)

 die reale unendliche Kurve dominiert damit eine periodische
Wiederholung eines Stücks von η-

5- 20

Beispiel: periodische Ereignisse mit Jitter

5- 21

Beispiel: periodische Ereignisse mit Burst

d
-

: minimaler Ereignisabstand D

5- 22

Beispiel: Traffic Shaping, z.B. AFDX (BAG)

 Ziel: Begrenzung der Spitzenlast durch Jitter oder Burst

 Ansatz: Erzwingung eines minimalen Ereignisabstands D durch
„traffic shaping“ – siehe BAG, ähnlicher Ansatz in TSN

 verwendet, um Überlast zu vermeiden

 erfordert Pufferung und erhöht ggf. die Latenz

shaper

5- 23

5-24

Traffic shaping - Modellierung und Effekt

+J0

η(Δt)

3

4

5

6

5

T

Jt 

1

2

Δt

T

Jt 

)(t

)(t




d

t

+J0

η(Δt)

3

4

5

6

5

T

Jt 

1

2

Δt

T

Jt 

)(t

)(t




d

t

traffic
shaping

0

η(Δt)

3

4

5

6

5

T

Jt 

1

2



d

t

Δt

T

Jt 

+J

)(t

)(t

5 - 25

Resultierende Last - Utilization

 die aktivierenden Ereignisse bestimmen nur die Häufigkeit der
Ausführung einer Task in der Zeit t

 zur Bestimmung der resultierenden Last wird noch die
Ressourcennutzung pro Ausführung benötigt

 angegeben wird die Ressourcennutzung C durch
 die Ausführungszeit (execution time) einer Task oder

 die Übertragungszeit eines Frames

 die Utilization ergibt sich aus der Verknüpfung von C und η+(∆t)

T1 T2

* *

C1 C2

U1 U2

Ui Utilization der Task i

Ci Execution Time der
Task i

5 - 26

Utilization

 in formalen Analyseverfahren wird oft nur die größte
Ausführungszeit verwendet – Worst Case Execution Time (WCET)
 vereinfacht das Modell

 die Ausführungszeit ist aber nicht konstant und hängt i.d.R. vom
Zustand ab (vgl. auch Containertasks in Kap. 3)
 daraus ergibt sich ein Worst Case Execution Trace

Ausführungssequenz (Trace) - Beispiel

absolute Zeit

2 3 1 4 2 2

Terminierung

Aktivierung

Ausführungszeit

5 - 27

Workload Model

 definiere Workload Curve, ebenfalls als Fensterfunktion, dieses
Mal über die Ereignisfolge
 daraus ergibt sich ein Worst Case Execution Trace

 Definition ET-/+(n): minimale/maximale akkumulierte
Ressourcennutzung über ein Fenster von n aufeinanderfolgenden
Ausführungen
 auch hier gelten Sub- bzw. Superadditivität

5 - 28

Workload Model: Beispiel

Verringerung der
Last im Modell

1 2 3 4 5
consecutive executions (n)ac

cu
m

ul
at

ed
 w

or
kl

oa
d WCET model

ET+(n) model

6

WCET

5-29

5.3 Scheduling - Strategien und Analyse
Wichtige Begriffe – Zusammenfassung

 Task: Ausführbare Einheit (vgl. Kap. 3), z.B.

 ein Programm, das bis zu seiner Beendigung auf einem Core läuft

 eine Nachricht, die über ein Kommunikationsnetz gesendet wird

 Job: Instanz einer Task, z.B.

 eine einzelne Ausführung einer wiederholt ausgeführten Task

 ein einzelnes Frame einer wiederholt gesendeten Nachricht

 preemptive (unterbrechend): ein Job kann während seiner Ausführung
unterbrochen und später fortgesetzt werden

 non preemptive (nicht unterbrechend): ein Job kann nicht unterbrochen
werden, sobald er gestartet wurde

 Worst Case Execution Time (WCET): max. Ausführungszeit eines Jobs

 Response Time (Antwortzeit): absolute Zeit von der Aktivierung bis zur
vollständigen Ausführung eines Jobs

 Worst Case Response Time (WCRT): maximale absolute Zeit von der
Aktivierung bis zur vollständigen Ausführung eines Jobs

5-30

Schedulability

Begriffe

 Deadline: maximal zulässige Zeit bis zur vollständigen Ausführung eines
Tasks

 optional: Tasks können Deadlines haben, müssen aber nicht

 verschiedene Typen von Deadlines

 hard deadline: jede Deadline muss eingehalten werden → hard real-time
task

 firm deadline: unter bestimmten Regeln sind gelegentliche Deadline-
Misses erlaubt → weakly hard real-time task

 soft deadline: die Einhaltung von Deadlines bestimmt die Qualität einer
Implementierung → soft real-time task

 Schedulability: ein System ist schedulable (schedulebar), wenn gilt:

 alle Jobs aller Tasks halten ihre Deadlines gemäß dem Deadline-Typ ein

 alle Jobs werden irgendwann einmal ausgeführt und beendet

 Scheduling ist uns in der VL oft begegnet

 hier befassen wir uns systematisch damit

 Scheduling in Space

 exklusive Zuweisung getrennter Ressourcen: Speicherbereiche, Cores,
Busleitungen, Frequenzen, …

 Scheduling in Time

 Zuweisung von Ressourcen zu unterschiedlichen Zeiten

 static order scheduling – zyklische Wiederholung einer festen
Reihenfolge von Tasks

 zeitgesteuertes Scheduling – zyklische Zuweisung von Zeitschlitzen

 prioritätsgesteuertes Scheduling – Zuweisung gemäß Prioritäten

 andere, z.B. budgetbasiertes Scheduling – hier nicht näher betrachtet

 nur wenige dieser Schedulingstrategien sind in der Praxis verbreitet

 betrachten nur eine Auswahl, um die Prinzipien zu verstehen

Scheduling - Strategien

5-31

5-32

Static Order Scheduling

P1

P2

address P1
adr. driver C1

address P2
address P5

Scheduler:
for (i=1;i<=max_process;i++)
call_process (process[i]);
wait until trigger;

 Durchlaufen einer festen Reihenfolge von Tasks und
Kommunikationsschritten

 gesteuert durch eine periodisch sequentiell durchlaufene
Prozesstabelle (vg. Kap. 4: MicroC/OS Background Tasks)

 Prozesstabelle und Tasks können in einen einzigen Task überführt
werden („inlining“), um dann mit dem Compiler optimiert zu
werden

process

C1

P5

timer

trigger every tp

5-33

Static Order - Verzahnung von Abläufen in Komponenten

C1

P1

tp

tp: scheduling period

pe: processing element
ce: communication element

pe1

pe1 pe2

ce1

pe2

ce1

architecture example

P4

tcsw

P5

C2

P2

P3

P1

P3

C1

P4

C2

P5P2

5 - 34

Static Order Scheduling - Einsatz

 die exakte Sequenz unterstützt

 verzahnte Ausführung (s. Beispiel)

 Pufferoptimierung (s. Kap. 2)

 am besten geeignet, wenn Zeitverhalten und Steuerung von
Eingabedaten unabhängig sind

 wichtige Anwendungen

 digitale Signalverarbeitung (DSP)
z.B. Codegenerierung aus SDFs (Kap 2)

 einfache Betriebssysteme (s. Kap. 4)

 Scheduling von Runnables in Containertasks (Kap. 3)

 Grenzen des Static Order Scheduling

 dynamische Umgebungen: Eingaben mit Jitter

 Ausführung mit datenabhängigem Zeitverhalten

5-35

Zeitgesteuertes Scheduling – statische Slotzuweisung

 Time Division Multiple Access (TDMA)

 periodische Zuweisung fester Zeitslots

 anwendbar auf pe und ce

P1 P2 P3 P4 P1 P2 P3 P4

tpTDMA

P1

P2

P4

P3

12

tP1 tP4

13

tpTDMA

TDMA Beispiel

12

13

tP2

10

tP3

5

10

5

TDMA Time-Partitioning

 Time-Division Multiple Access (TDMA) Scheduling entspricht einer
festen Ressource-Partitionierung (Kanaltrennung)

 Antwortzeiten werden nur vom Schedule beeinflusst, aber von anderen
Funktionen

 Annahmen hierbei

 alle Sender halten sich an den TDMA Schedule

 alle Sender sind zeitsynchronisiert

 das Zeitverhalten Ci wird durch den Zustand der Plattform nicht verändert
(z.B. durch Cache-Zustand, TLB, …)

 TDMA hat begrenzte Effizienz: ungenutzte Slots können nicht von
anderen Funktionen genutzt werden

 ungenutzte Ressource trotz aktivierten Tasks → nicht lasterhaltend











Mi

i
MiTDMAii t

C
ttCR)(

Ri response time frame i; tMi time slot
Ci execution/frame transmission time
tTDMA TDMA cycle time

5-37

7

9

3

10

13

12

13

TDMA Beispiel

12P1

P2

P4

P3

10

5

13

P1-P4 P2

tP1,response = 129

12

10

5

13

12

5 5

3

4

9

5

t

10

idle resourcetpTDMA

Scheduling and idle times in TDMA

tCSW omitted
for simplicity

tP3,response = 414

5-38

TDMA in der Praxis

 robuste Technik

 solange die Uhren synchronisiert sind, kann die Steuerung beliebig
verteilt werden

 keine Arbitrierung erforderlich

 wichtige praktische Beispiele

 GSM Protokoll (zellulare drahtlose Netze)

 FlexRay

 Profinet

 ARINC 653 Betriebssystem

Example: ARINC 653

 Avionics - IMA

 partitions are assigned to time windows TPi iterating over a major Time
Window MAF

 execution can exceed single time window

 supports scheduling hierarchies

source: Ch. Ficek, Symtavision

5-40

Round-Robin Scheduling

 Vergabe ungenutzter Zeitslots

 keine Leerzyklen – höhere Effizienz als TDMA

 im ungünstigsten Fall Antwortzeiten wie TDMA

 geeignet z.B. für Soft Deadlines oder Funktionen mit möglichst guter
QoS (“best effort”)

 geeignet für Kombinationen von hard real-time und anderen Tasks

 Unabhängigkeit der Prozesse entfällt

 Zeitverhalten komplizierter als TDMA
 bei Vorliegen der Zeitdaten aber berechenbar

 aber garantierter minimaler Service

5-41

Round-Robin Beispiel

 periodische Aktivierung

 ungenutzte Ressource unverzüglich freigegeben

 keine ungenutzte Ressource bei aktivierten Tasks → lasterhaltend

tP1,response = 113 (TDMA: 129)

Round Robin example

12P1

P2

P4

P3

10

5

13

P1-P4

12

10

5

13

12

5

3

4

9

t

tRR(1)

5 5 5

10 10 3

5 45 5 5

tRR(2) tRR(3)

cycle 1 cycle 2 cycle 3 P2

tP3,response = 168 (TDMA: 414)

5-42

Round-Robin in der Praxis

 Round-Robin Steuerung

 erfordert Taktsynchronisation wie TDMA

 zentrale Steuerung wenig aufwendiger als TDMA

 verteilte Steuerung (Kommunikation) wesentlich aufwendiger
 welcher Sender ist bereit?

 wer ist der nächste Sender?

 Beispiel für Protokoll: Byteflight Minislots (FlexRay dynamisches Segment),
dort mit priorisierter Slotvergabe (kann durch RR ersetzt werden)

 wichtiges praktisches Beispiel

 die meisten Betriebssysteme

5-43

Prioritätsgesteuertes Scheduling

 statisch zugewiesene Prioritäten

 die Priorität von Tasks oder Nachrichten bleibt konstant

 beliebteste Strategie in eingebetteten Systemen (neben TDMA)

 static priority preemptive (SPP)
 Beispiele OSEK/VDX, AUTOSAR

 static priority non preemptive (SPNP)
 Beispiele CAN, OSEK/VDX, AUTOSAR

 dynamisch zugewiesene Prioritäten

 Task oder sogar Job Prioritäten zeitlich variabel

5-44

Scheduling mit statischen Prioritäten

 wir werden uns im Folgenden auf periodische Aktivierung beschränken

 Modell 1
 Deadlines am Ende der Periode

 Modell 2
 Deadlines vor dem Ende der Periode

 Modell 3
 beliebige Deadlines

Rate Monotonic Scheduling (RMS) – Modell 1

 zugrunde liegendes Taskmodell

 periodische Aktivierung unabhängiger Tasks

 Deadline am Ende der Taskperiode

 WCET jeder Task ist bekannt

 Prioritäten werden gemäß Periode zugewiesen

 kürzere Periode  höhere Priorität - „Rate Monotonic“

 beweisbar optimaler Schedule für Singlecore-Prozessoren

 optimal: wenn nicht mit RMS schedulebar, dann gar nicht schedulebar unter
SPP

 Priorität ist ein Parameter des Scheduling und bedeutet nicht Wichtigkeit!

 wird breit verwendet, da einfach und leicht analysierbar

 eingeführt von Liu und Layland 1973

5-46

Rate Monotonic Scheduling (RMS) - 2

 Erweiterungen für Multiprozessoren und abhängige Prozesse verfügbar

 asynchrone Prozesse mit maximaler Wiederholrate können in Analyse
einbezogen werden (dann nicht optimal)

 Verwandtes Verfahren für Modell 2:
Deadline Monotonic Scheduling (DMS):

 Deadline liegt vor dem Ende der Periode

 kürzere Deadline → höhere Priorität

 hier nicht weiter betrachtet

5-47

Rate Monotonic Scheduling (RMS) - 3

 Theorem 1 (Liu/Layland 73):
Ein System von n unabhängigen Tasks, deren Priorität durch RMS bestimmt
ist, wird immer dann alle Deadlines erreichen, wenn gilt (hinreichend):

 wobei: Ci, Ti Laufzeit und Periode des Tasks i

lim (U(n)) = ln 2 = 0,69 U: Utilization
n 

)12()(. . . 1

2

2

1

1  n

n

n nnU
T

C

T

C

T

C

5-48

Rate Monotonic Scheduling (RMS) - 4

 Beispiel 1
P1: C1 = 20us, T1 = 100us
P2: C2 = 40us, T2 = 150us
P3: C3 = 100us, T3 = 350us

erfülltBedingung

nnU
T

C

T

C

T

C n

n

n








779,076,0

779,0)12(3

76,029,027,02,0

?)12()(. . .

3/1

1

2

2

1

1

U1 = 0,20
U2 = 0,27
U3 = 0,29

Änderung: C1 = 40us  U1 = 0,4

0,96 > 0,779  Bedingung nicht erfüllt, Schedule nicht garantiert

5-49

Rate Monotonic Scheduling (RMS) - 5

 Theorem 2 (Liu/Layland 73):

 Gegeben eine Menge von n unabhängigen Tasks, deren Priorität durch
RMS bestimmt ist, und die zur selben Zeit aktiviert werden
- critical instant

 Wenn jede Task ihre erste Deadline erreicht, dann werden alle künftigen
Deadlines immer und für jede Kombination von Startzeiten eingehalten.

 notwendig und hinreichend (für Ci = WCETi)

5-50

RMS Scheduling Beispiel

P1

P2

P3 20

P1-P3

tpRMS

 Beispiel 1a
P1: C1 = 40us, T1 = 100us
P2: C2 = 40us, T2 = 150us
P3: C3 = 100us, T3 = 350us

0 T2

P1

T1

40 40

P2 P1

2xT1

P1.2

3xT1

40 40 40

40

40

60

P3

T3

alle Deadlines erreicht!

5-51





























n
nn T

t
C

T

t
C

T

t
CtW . . .)(

2
2

1
1

Rate Monotonic Scheduling (RMS) - 5

 Beobachtung: Zu jeder Zeit t beträgt die gesamte angeforderte
Ressourcenzeit (Service)

 Im Beispiel:

 W3(0+) = C1 + C2 + C3 / alle drei Tasks erstmals aktiviert

 W3(T1+) = 2*C1 + C2 + C3 / Task P1 zum zweiten Mal aktiviert

 W3(T2+) = 2*C1 + 2*C2 + C3 / Task P2 zum zweiten Mal aktiviert

 …

 die angeforderten Ressourcen wurden zum Zeitpunkt t vollständig
bereitgestellt, wenn gilt

ausgehend vom Critical Instant müssen wir nur den ersten Zeitpunkt
finden, wo die Gleichung gilt (Fixpunktproblem) → „Busy Window“

)(tWt n

5-52

Model 3: Beliebige Deadlines

T1

Analyse verallgemeinert das „Busy Window“- Verfahren (auch „Busy Period“)Analyse verallgemeinert das „Busy Window“- Verfahren (auch „Busy Period“)

Finde die WCRT RFinde die WCRT R

C2

C3

T2

T2

C2
T2

C2T2

P3

P2 C2

C1 C1
P1

P
ri

o
ri

tä
t

5-53

Bestimmung der WCRT von P2Bestimmung der WCRT von P2

T1

C2T2 T2

P
ri

o
ri

tä
t

C2

C1 C1

C2
T2 C2T2

w2(3)
2 * T2 R2(3)

wieder Fixpunkt-
gleichung

P1
P2

suche max. R2 für
alle q

hier: R2(3)

5-54

Static Priority - Prioritätsinversion

 Priority Inversion Problem

 tritt bei gegenseitigem Ausschluß z.B. bei Zugriff auf gemeinsame
Daten oder Ressourcen (Interfaces) auf

 Task P1 niederer Priorität kann dann höherprioren Task P2 für eine
unbestimmte Zeit verzögern

 Beispiel für invertierte Priorität:
 P1 höhere Priorität als P2 höhere Priorität als P3

 P3 greift auf Semaphore S zu, blockiert S und tritt dann in einen kritischen
Bereich ein

 P1 wird bereit, wird ausgeführt und greift auf Semaphore S zu. Da S blockiert ist,
wartet P1.

 P2 wird bereit. Da P2 höhere Priorität als P3 besitzt, wird P3 unterbrochen und P2
fortgesetzt usw.

 P1 verfehlt seine Periode

5-55

Priority Ceiling Protocol - PCP

 Ansatz: Priority Ceiling Protocol (PCP)

 S erhält eine Priorität und zwar so hoch, wie der höchste auf S
zugreifende Task

 wenn ein Task auf S zugreift und blockiert, erhält er die Priorität von S

 Theorem 4 (PCP):

Das PCP vermeidet Deadlocks. Ein höherpriorer Task kann höchstens ein

Mal durch einen niederprioren Task blockiert werden.

ii

k
ihpk

j

i

ihpj
jii

TRi

B
T

R
CCR




















:

)(max
)(

)(

• Ri WCRT of task i;
Ti period (or minimum activation
distance)

• Ci WC execution time (WCET)
• hp(i) higher priority messages
• Bk: Blocking time
• für Deadline am Ende der Periode

(q=1)

5-56

RTOS Overhead

Example: Static priority scheduling with ERCOSEKTM

tA,resp

tB,resp

RTOS overhead increases response times

5-57

RTOS and scheduling effects combined

tA,resp tA,resp tA,resp

tB,resp tB,resp

5-58

Statische Prioritäten in der Praxis

 Statische Prioritäten in der Kommunikation

 vergleichbar TDMA kennen alle Sender ihre Priorität im Voraus

 keine Taktsynchronisation erforderlich

 Zugriffsprotokoll benötigt

 Statische Prioritäten können beliebig erweitert werden, solange freie
Prioritäten verfügbar sind

 niemals Leerlauf, solange ein aktivierter Task vorliegt → lasterhaltend

 wichtige praktische Beispiele

 CAN

 OSEK/AUTOSAR

 (standard PC I/O-bus standards)

5 - 59

Beispiele: Scheduling in OSEK/VDX und AUTOSAR

 static priority preemptive scheduling (SPP)
 kann auf „Preemption Points“

beschränkt werden

 3 Prioritätsblöcke
 interrupt – scheduling – task level

 task level mit periodischen Tasks
 Rate Monotonic Scheduling

 Aktivierungs-Offsets für verringerte
Spitzenlast (verändert Critical Instant)

 PCP Protokoll

interrupt level
activated by interrupt

logical level
scheduling activities

task level

priority

source: OSEK/VDX standard V2.2.3

5-60

Dynamische Schedulingverfahren

 Erreichen Auslastung bis U = 1 durch dynamische Anpassung der
Prioritäten an die aktuellen Deadlines und Prozesse

 Ansatz im Einzelprozessor: Earliest Deadline First (EDF)
Der Prozeß wird ausgeführt, der die kürzeste Deadline besitzt

 EDF erfordert Scheduling zur Laufzeit
(vgl. Rechnerarchitektur: dynamisches Befehlsscheduling)

 bei bekannter Last lassen sich auch für EDF Schedulability Analysen
durchführen

 spielt in der Praxis eingebetteter Systeme aber eine geringere Rolle als
Verfahren mit statischen Prioritäten

 beliebtes Verfahren in der Schedulingtheorie

 gute Ansätze für Multicore-Systeme

5.4 Globales Systemverhalten und seine Analyse

 bei periodisch aktivierten Tasks wird die Last im Modell durch die
Komponente selbst bestimmt

 periodische Aktivierung – kein Einfluss von Ereignissen am Eingang

 Ressourcennutzung wurde zu WCET oder den ungünstigsten Trace
abstrahiert

→ Effekte des Scheduling, z.B. WCRT oder ET-/+(n), können lokal bestimmt
werden

→ die Scheduling-Effekte von Systemen mit ausschließlich periodischer
Last sind composable

 bei Aktivierung durch Ereignisse muss das Verhalten vorangehender
Komponenten berücksichtigt werden

 erfordert Analyse auf Systemebene

 typisch für reaktive Systeme und Kommunikationsnetze (daher Network
Calculus)

→ die Scheduling-Effekte solcher Systeme sind nicht composable

 aber: es gibt Methoden zur Erzielung von Compositionality

5- 61

Timing Model Hierarchy für globale Analyse

5- 62

IP

MP M P

M

T1 T2

P

BSW

RTE

T1 T2

 system timing model

 performance of components integrated
in a network

 component timing model

 activation function

 component
scheduling/arbitration

 task timing model

 execution load and timing

 communication load and timing

activation * *

Global system analysis using compositional approach

 independently scheduled subsystems are coupled by data flow

 subsystems coupled by streams of data

 interpreted as activating events

 coupling corresponds to event propagation

comp 1

scheduling
comp 1

P2

P1

comp 2

scheduling
comp 2

P4

P3

event stream

5- 63

Compositional analysis principle

environment model

local analysis

derive output event model

map to input event model

until convergence or non-schedulability

find fix point
where input and
output models
converge

Symbolic
Simulation
or RTC

5- 64

System-level Analysis Results

 end-to-end latencies

 buffer sizes

 system load

 ….

example: complex end-to-end
latency analysis w. SymTA/S

source:
Symtavision

5- 65

5 - 66

Gewinnung der benötigten Daten

 Test mit Simulation/Prototypen
 Simulation setzt Verfügbarkeit von Modellen voraus – oft nicht der Fall

 Prototyping erst spät im Entwurf möglich oder mit Komponenten mit
anderem Zeitverhalten

 Anwendungen und Architekturen mit vielen zeitlichen Abhängigkeiten sind
große Herausforderung und erfordern bei Änderungen Wiederholung des
Testaufwands

model
development
& simulation
/prototyping

model
integration
& simulation
/prototyping

model&pattern transfer

5 - 67

Gewinnung der benötigten Daten

 Formale Worst Case Modelle
 haupts. für kritische Anwendungen

 genaue Modelle für analytische Verfahren (u.a. Fa. AbsInt) fehlen oft

 Observed Worst Case Modelle
 Messung der WCET im Prototypen oder auf einem Simulator

 deutlich höhere Zuverlässigkeit der Messung als im komplexen Systemtest

observed
worst case
in simulation
or prototyping
(e.g. trace
analyzer)

observed
worst case
model
integration
and analysis
(e.g. SymTA/S)

observed
worst case
execution data

5 - 68

 für genauere Workload-Modelle werden Traces benötigt

 Messung von Worst Case Execution Traces

 formale Methoden basierend auf dem Busy-Window-Verfahren und der
globalen Analyse verfügbar

 nutzt worst case execution trace (formal oder observed)

 wesentlich weniger konservativ als die Worst Case Analysis

 guaranteed behavioral bounds

 sofern der Trace
den Worst Case enthält

Daten aus Traces – Trace Based Analysis

model
development
& simulation
/prototyping

observed worst case execution trace

trace based
worst case
model
integration
and analysis
(e.g. pyCPA)

5 - 69

5.5 End-zu-End Latenzen und Wirkketten

Verbliebene Frage:

 Beeinflusst das Zeitverhalten die Funktion?
 werden globale Deadlines der Anwendung erreicht?

 wird die Funktion durch das Zeitverhalten beeinflusst?

 unterschiedliche Effekte bei Zeit- und Ereignisaktivierung

 Ereignisaktivierung
 aus der Response Time lässt sich die Latenz pro Komponente bestimmen

 die Summe aller Komponentenlatenzen ergibt die Gesamtlatenz

 dabei können Sondereffekte genutzt werden („Pay Burst Only Once“)

→ compositional

5 - 70

Wirkketten in zeitgesteuerten Systemen

 Ende-zu-Ende-Verhalten in zeitgesteuerten Systemen ist deutlich
komplizierter
 Registerkommunikation führt zu Überschreiben von Werten

 Überschreiben und Lesen ist abhängig vom Lese- und Schreibzeitpunkt
– abhängig von den Antwortzeiten der Komponenten

5 - 71

Kommunikation bei zeitaktivierten Tasks

Task 1

Task 2

Shared Data

 typische Vorschrift für Datenkonsistenz
 Lesen der kommunizierten Daten am Anfang einer Task

 Schreiben der kommunizierten Daten am Ende der Task

 atomarer Ablauf: oft mit Locks (Semaphore) geschützt – siehe PCP Protokoll

 Kommunikation zeitabhängig

 wird ein Task früher/später beendet, kann ein früherer/späterer Wert gelesen
werden

 erfordert Wirkkettenanalyse - compositional

 ändert sich mit dem Softwarestand, dem verwendeten Prozessor, …

5 - 72

Wirkketten und Multicore-Architekturen

 in Multicore-Architekturen entstehen komplizierte Zeiteffekte
 durch Zerlegung von großen Container-Tasks

 durch Parallelverarbeitung

 erfordert Synchronisation der Runnables fi

f1 f2 … … fn-1 fn f1 f2 … … fn-1 fnsplit

Ti,j

f1 f2 …Ti f1 f2 …

forward

backward

… fn-1 fnTk … fn-1 fnCore2

Core1

Ti,j

t

map

5 - 73

Forderung Synchronisation der Kommunikation

 die übliche Synchronization von Zugriffen über Mutex-Variable führt zu
Blockierungseffekten (z.B. mit Multicore-Erweiterung von PCP), die Jitter
und Antwortzeit erhöhen (Diss. Negrean)

 stattdessen wird eine nicht blockierende (lock-free) Synchronization der
Zugriffe über feste Zeitmarken angestrebt

 die Kommunikationszeitpunkte werden Teil des Implementierungsmodells

5 - 74

 „Logical Execution Time“ Paradigma (LET)
 Trennung von Berechnung und Kommunikation

 kommuniziere nur zu festen Zeitpunkten – LET Marken

 kommunizierte Werte sind unverzüglich für alle Tasks verfügbar t = 0
(vgl. synchrone Automaten)

Wichtiges Verfahren für zeitgenaue Kommunikation: LET

übliche Taskausführung:
Bounded Execution Time (BET)
aktiviert zum Zeitpunkt ti

f1R WTi

tRW,i  tWCRT,i

tWCRT,i

ti

f1R WTi

tWCRT,i

tR,i tW,i

delayed
write

Taskausführung mit
Logical Execution Time (LET)
Lesevorgang exakt zum Zeitpunkt tR,i

Schreibvorgang exakt zum Zeitpunkt tW,i

5 - 75

Bewertung LET

 LET führt zu deterministischer Kommunikation wie im Fall von
synchronen Automaten

 LET macht das Zeitverhalten sogar composable
 gut für inkrementellen Entwurf, Reuse oder Updates

 LET ist lasterhaltend

 die Forderung t = 0 für die Kommunikation ist so nicht erfüllbar
 praktische Umsetzung z.B. über Doppelpuffer, nicht ganz einfach bei

Multicore

 LET muss maximale Latenzen annehmen
 composability geht auf Kosten der erreichbaren Ende-zu-Ende Latenzen

→ Anpassung der LET Marken an die Architektur

→ spezielle Schedulingverfahren mit dynamischer Priorität („Priority Boosting“)

 erste Multicore-Implementierungen mit LET in der Industrie

 aktives Forschungsthema für den Systementwurf

Zusammenfassung

 Kap. 5 hat nur einen kleinen Einblick in die vielfältigen Modelle und
Schedulingstrategien der eingebetteten Systeme geben können

 die Ereignismodelle für die Schedulingverfahren sind kompatibel zu
den Modellen der Funktionsarchitektur

 die systematische Integration von Funktionen auf einer
Ausführungsplattform erfolgt heute zunehmend unter Verwendung
dieser formalen Modelle

 erhöht die Sicherheit im Entwurf, vor allem bei Multicore

 neuere Architekturen machen die zeitliche Vorhersage aber schwieriger

 formale Modelle ermöglichen die Ableitung von Monitoren zur
Laufzeitüberwachung (s.a. Kapitel 6)

 Forschungsthemen liegen unter anderem in neuen Modellen für
probabilistische und weakly-hard Systeme und in einer systematischen
Abhängigkeitsanalyse

 im Prinzip wäre mit den Methoden auch eine automatisierte Abbildung
von Funktionen auf Plattformen möglich

 ist aber (noch) nicht Stand der Technik
5- 76

