5. Systematische Integration
5.1 Entwurfsprozess eingebetteter Systeme

e der klassische Systementwurf verwendet das Wasserfallmodell
(Waterfall Model)

requirements
definition

specification %
architecture design %

function implementation

e das Wasserfallmodell betrachtet den Entwurf als Sequenz von
Implementierungsschritten (Top-Down-Design)

o es fehlt ein systematischer Ansatz fur Integration und Test
— wichtig fur komplexe Systeme und fur Zulieferketten (Supply Chains)

Entwurfsprozess — V-Model

requirements —————— acceptance test

\ /

systems design .———— system I&T

module design — module I&T

waterfall /

function — function
impl. <— test

imple- u integration

mentation &test (1&T)

— test and integration description

<+<— test and verification results

V-Model

e das V-Model erweitert das Wasserfallmodell
— durch einen umfassenden Test-/Verifikations- und Integrationsprozess

— spiegelt den Implementierungsprozess des Wasserfallmodells

e das V-Model erlaubt die systematische Einbettung von
Entwurfsprozess und Entwurfsergebnis (“Artefact”)

— Entwurf von Software und Plattform werden Teil des Entwurfs eines
eingebetteten Systems

— Entwurf eines eingebettete Systems wird Teil des Entwurfs eines
Fahrzeugs, eines Flugzeugs, einer Industrieanlage oder eines Gebaudes

e das V-Modell ist De-Facto-Standard im heutigen Systementwurf

Einbettung von Entwurfsprozess und Artefact im V-Model

requirements -

function —— function

2nd tier 2nd tier
suppliers \ suppliers \

impl. test
Imple- v Integration
mentation &Test (I1&T)

— test and integration description

<+«— test and verification results

V Model und Modellgestiutzter Entwurf

zwischen je zwei Ebenen gibt es einen Ubergang zwischen
Entwurfsteams und Verantwortlichkeiten

auf jeder Ebene werden ausreichende Informationen benotigt, um
das Entwurfsergebnis (Artefact) unabhangig tiberprifen zu
konnen

favorisiert werden formalisierte Modelle

) OEM
— abstrahieren von unnoétigen Details
— verringern Unklarheiten in der specs‘ 1 ECUs
Implementierung
— erlauben unabhangigen Test, ECU - Supplier

Verifikation und Funktionsvalidierung

— unterstutzen die Nutzung von Vertragen
(Contracting)

specs‘ 1 SoCs

HW Component - Supplier

— modellgestitzter Entwurf SW Component - Supplier

Anforderungen an eine systematische Integration

die systematische Integration basiert auf einer modularen und
vorhersagbaren Implementierung und Modellierung der Funktion

angestrebt werden zwei Eigenschaften
— Composability
Bei der Integration behalt eine Funktion/ein Modul das in Modellen
beschriebene Verhalten unverandert bei
— Compositionality
Das aus der Integration resultierende Verhalten ist aus den Modellen der
einzelnen Funktionen/Module ohne weitere Kenntnisse formal ableitbar

beide Eigenschaften ermoglichen eine modeligestiitzte modulare
Integration
— fur Composability genugt die Kenntnis der abstrakten Funktion und ihrer

Schnittstellen, Compositionality erfordert zusatzlich Methoden zur
Komposition des Verhaltens

Voraussetzungen fur Composability und Compositionality

e Voraussetzung sind stets geeignete Modelle und geeignete
Plattformen

e beide Eigenschaften beziehen sich auf bestimmte
Entwurfsaspekte und deren Modelle

o Entwurfsaspekte bei der Integration eingebetteter Systeme
— Integration der logischen Funktion

e Trennung uber Isolation und Steuerung der Zugriffe auf Daten und
Rechenschritte (Kap. 4)

e Ziel: Composability; Compositionality bei Abhangigkeit der Funktionen
¢ Problem der Funktionsentwicklung - in der VL nicht tiefer betrachtet

— Beherrschung des Zeitverhaltens bei der Integration (Kap.4):
e Ziel: Composability oder Compositionality
o stark von der Plattform beeinflusst - Fokus der VL

5.2. Zeitverhalten — Grundlagen

was uns interessiert:

e Wie kann das Zeitverhalten kontrolliert werden?
— Scheduling

e Kann die Plattform die Anwendungen mit dem geforderten
Zeitverhalten ausfiihren?

— Schedulability

e Beeinflusst das Zeitverhalten die Funktion?

— Cause-effect Chains (Wirkketten)
(in VL nur skizziert)

Entwurfsprozess - Wo wird das Zeitverhalten benotigt?

e in den friihen Phasen des Entwurfs \ —
— Ziel: Auslegung der Vernetzung und des physikalischen |\"™ %[

Aufbaus \
— Datenquellen: Funktionsarchitektur, Schatzung, frihere g

Implementierung ote

Intsgration
&taet (IBT)

— Problemstellung: oft noch Anderungen unterworfen

e im Modulentwurf
— Ziel: Strukturierung der Plattformkomponenten, Lastverteilung (Multicore),

— Datenquellen: Funktionsarchitektur, frihere Implementierung, neue
Implementierung, Messung, Schatzung

— Problemstellung: Daten oft nur teilweise bekannt

e bei Integration und Test des Gesamtsystems

— Ziel: Adaption an Plattform und Physik, Uberpriifung der Anforderungen
und der Implementierung

— Datenquellen: Modelle, Messungen, Systemtests
— Problemstellung: Daten oft nur teilweise bekannt, Aufwand

Problematik des Zeitverhaltens

e grundsatzlich ist die Bestimmung sehr aufwendig

— da Ausfuhrungszeiten und — haufigkeit von der Funktion und den Daten
bestimmt werden, ist der Zustandsraum der Ausfilihrung prinzipiell so
grofd wie der der Funktion

— hinzu kommt der Zustandsraum der Plattform — Architektur, Taktung, ...

e Vorhersagbarkeit der Plattform wird mit komplizierten
Architekturen schwieriger

— Architekturen i.d.R. nicht auf Vorhersagbarkeit optimiert, sondern auf
Performanz

¢ wieviel muss man wissen, um die interessanten Fragen zu
beantworten

— wieviel Vorhersagbarkeit bendtigen wir?
— Was ist eine zuldssige und sinnvolle Abstraktion?

Bestimmung des Zeitverhaltens

e prinzipiell mit allen bekannten Verifikationsverfahren
Test, Simulation, Prototypen, formale Analysen

— grundsatzlich sehr aufwendig und generell riskant wg. Zustandsraum und
fehlenden Daten

— Modelle in fruhen Phasen oft nicht ausfiihrbar — keine Simulation oder
Test moglich

— Formale Analysen problematisch wg. Komplexitat und Vollstandigkeit
der Modelle und Methoden

— bendtigen sinnvolle und zulassige Abstraktion

5.2 Ereignismodelle und Last

e die Aktivierung von Tasks erfolgt zeitgesteuert oder ereignisgesteuert
¢ in beiden Falle kann die Aktivierung von Tasks durch eine Sequenz
einzelner Ereignisse in der Zeit modelliert werden
— auch Basis der Simulation
o fur formale Betrachtungen ist es guinstiger, von einzelnen Ereignissen

zu abstrahieren und die Eigenschaften der (unendlichen)
Ereignissequenz zu betrachten

— eine solche Sequenz wird als Ereignisstrom (event stream) bezeichnet
— er wird mit abstrakten Ereignis(strom-)modellen beschrieben

event activated event activated

event i

source ull

event

model
sample

R . clock
activation functions - example

time activated
5-12

Abstrakte Ereignismodelle - periodische Ereignisse

1:eO 1:e1 1:e2 te _te :tP
l tP ‘l tP ‘l ecee t

t.; typisch durch Timer erzeugt

=1, +i-1p

i

o dies ist das wichtigste Ereignismodell, das bei allen periodischen
Aktivierungen zeitaktivierter Tasks auftritt (Kap. 3)

o die Sequenz ist prinzipiell unendlich

e Bespiele
— periodische Abtastung: SDF, Simulink, ...
— periodisches Polling (Kap. 3)

5-13

Periodische Ereignisse mit Jitter

e der Jitter j verschiebt den Ereigniszeitpunkt um maximal eine Periode
t, tit, <t <t +i-tp+J

t t _ t
e0 el jz J < tp

|

to to

e Beispiele

b = [= 1 |
periodische m periodische

Ereignisse Ereignisse
mit Jitter

« Ursachen
» datenabhangige Ausfuhrungszeiten
« Schedulingeffekte

5- 14

Periodische Ereignisse mit Jitter und Burst

o der Jitter kann zu zwei beliebig dicht aufeinanderfolgenden Ereignissen
fliihren

o wird der Jitter groBer als die Periode, J > t; konnen sich Biindel von
Ereignissen mit beliebiger Dichte bilden (“Burst”)

o die tatsachliche Last wird dann durch die Plattformeigneschaft
begrenzt, etwa die Zahl der maximal Ubertragbaren Telegramme oder
der maximal ausfiihrbaren Tasks

e diese Begrenzung kann durch die maximale Ereignisdichte, D, erfasst
werden

teote»]tes eeooe t€0+i.tP<t€<teo+i.tP+J
U T 1
{ —t >D

—
D €+

5-15

Nicht-periodische Ereignismodelle

¢ nicht-periodische Ereignisse lassen sich weniger gut beschreiben,
da sie oft keinem regelmaBigen Muster folgen

e um die auftretende Last beschreiben zu konnen, fiihrt man auch
hier einen minimalen Ereignisabstand D ein
sporadisches Ereignismodell
—eP J tute £, — ¢, =D

€] €;
L,
D
o Beispiele ~N
— Eintreffen von Paketen
— Eingaben einer Benutzerschnittstelle

Fehlermeldungen
Kommunikation reaktiver Systeme

> reaktive Systeme

5- 16

Zusammenfassung Standard-Ereignismodelle

e die klassischen Standard-Ereignismodelle werden zu einem
allgemeinen (P,J,D) — Modell zusammengefasst

— extrem kompakte Abstraktion einer unendlichen Sequenz

e sehr verbreitet genutzt im Gebiet der Echtzeitsysteme
— vereinfacht die Analysen
— erlaubt Garantien (spater)
— sinnvolle und zulassige Abstraktion

e aber nur beschrankt aussagekraftig
— vor allem bei sporadischen Anteilen
— oder Kombination mehrerer periodischer Ereignisstrome (Kommunikation)
— dann wird das Modell zu konservativ fur einen effizienten Entwurf

e daher wurde in der Kommunikationstechnik ein machtigeres
Modell eingefiihrt

— genauere Beschreibung mit Arrival Curves
— heute auch fur eingebettete Systeme verwendet

Arrival Curves des Network Calculus

der Network Calculus transformiert eine Ereignissequenz aus dem
Raum der Zeit t in einen Raum uber Zeitintervalle At

— damit wird von zeitlichen Abhangigkeiten zwischen verschiedenen
Ereignissstromen abstrahiert
¢ konkret werden zwei Funktionen gebildet

— n*(At) maximale Zahl aktivierender Ereignisse, die in einem
Zeitfenster der Lange At auftreten kdnnen

— n°(At) minimale Zahl aktivierender Ereignisse, die in einem
Zeitfenster der Lange At auftreten kdnnen
e beide Funktionen erreichen unendliche Werte fir At »> «
— zur Nutzung durch periodische Fortsetzung approximiert
— deckt das (P, J, D)-Modell ab
e der Network Calculus liefert eine abstrakte Algebra, mit der das
Zeitverhalten fir viele Falle im At — Raum approximiert werden kann
— verwenden nur einige der Eigenschaften, da wir Verfahren in t und in
At kombinieren

5-18

Ableitung Arrival Curves - Beispiel

Ereignisstrom Ereignisse
Zahl Ereignisse in
t=[0 .. 2.5] ms T T T
.................. [trtittt
e, ﬁ—’
2.5 t [ms]
Arrival Curve
E"ﬂiéﬂi§se (a9 3

maximale/minimal ein-
treffende Ereignisse in
einem beliebigen Intervall
der Lange 2.5 ms

n-(At)

Praktische Eigenschaft der Arrival Curves

e Maximale Ereigniskurven sind subadditiv
n*(At1 + At2) < n*(At1) + n*(At2)
— eine periodische Wiederholung eines Stlicks von n* dominiert damit die
reale unendliche Kurve

e Minimale Ereigniskurven sind superadditiv
n(At1 + At2) 2 n-(At1) + n’(At2)
— die reale unendliche Kurve dominiert damit eine periodische
Wiederholung eines Stucks von n-

5-20

Beispiel: periodische Ereignisse mit Jitter

At . At+J T: period
n(A) n (At)= { -l At+J J: jitter
5 1 g Y o -—
4 \ i”” - :
’\ _ - _ - -
3 o
; S50 N vV
_ At—J T
At)=
1 n (A7) { T J
> At
5- 21

Beispiel: periodische Ereignisse mit Burst

AY) I
n(:)7 WSAt) i”’,
6 \r\ ,—I”<
5 i ,—ll’/ A+ J
4 :I‘h,,, - T
3 e Ar—J 7 (A -
| — ’\At | [=~
R ARE RN A ot
1 E @ i \i el
1 : _ T’
0" | I P > A

d : minimaler Ereignisabstand D

5-22

Beispiel: Traffic Shaping, z.B. AFDX (BAG)

e Ziel: Begrenzung der Spitzenlast durch Jitter oder Burst

e Ansatz: Erzwingung eines minimalen Ereignisabstands D durch
»traffic shaping“ — siehe BAG, dhnlicher Ansatz in TSN

e verwendet, um Uberlast zu vermeiden

¢ erfordert Pufferung und erhoht ggf. die Latenz

\ 4

I — shaper | — |||/ |

5-23

Traffic shaping - Modellierung und Effekt

1Ay 7 (A1) -

6
5 —
4_—"’” T
3 At—J 7 (A .-
2 T L= -~
1 \ _,ﬁ/'l_
S P At
0 i3
PR 2
| traffic |
lshaping |
— -_—

v

5-24

Resultierende Last - Utilization

o die aktivierenden Ereignisse bestimmen nur die Haufigkeit der
Ausfiihrung einer Task in der Zeit t

e zur Bestimmung der resultierenden Last wird noch die
Ressourcennutzung pro Ausfiuihrung benotigt

e angegeben wird die Ressourcennutzung C durch
— die Ausflihrungszeit (execution time) einer Task oder
— die Ubertragungszeit eines Frames

e die Utilization ergibt sich aus der Verknupfung von C und n*(At)

U; Utilization der Task i

C; Execution Time der
Task i

Utilization

¢ in formalen Analyseverfahren wird oft nur die grof3te
Ausfiihrungszeit verwendet — Worst Case Execution Time (WCET)

— vereinfacht das Modell

o die Ausflihrungszeit ist aber nicht konstant und hangt i.d.R. vom
Zustand ab (vgl. auch Containertasks in Kap. 3)
— daraus ergibt sich ein Worst Case Execution Trace

Ausfuhrungssequenz (Trace) - Beispiel

Aktivierung

[y e

Term|n|erung

Es aé
Ausfilihrungszeit

Workload Model

o definiere Workload Curve, ebenfalls als Fensterfunktion, dieses
Mal uber die Ereignisfolge
— daraus ergibt sich ein Worst Case Execution Trace

e Definition ET/*(n): minimale/maximale akkumulierte
Ressourcennutzung Uber ein Fenster von n aufeinanderfolgenden
Ausfuhrungen

— auch hier gelten Sub- bzw. Superadditivitat

Workload Model: Beispiel

Verringerung der
Last im Modell

® WCET model ——
< |
o 1
; * ---------------
-c Grnrsrnrr ..
Q frrveern e 4 ET*(n) model
o | é
> H
E L)
-]
8 F e
© ! WCET # consecutive executions (n)

1 2 3 4 5 6

5.3 Scheduling - Strategien und Analyse
Wichtige Begriffe — Zusammenfassung
e Task: Ausfuhrbare Einheit (vgl. Kap. 3), z.B.

— ein Programm, das bis zu seiner Beendigung auf einem Core lauft
— eine Nachricht, die Uber ein Kommunikationsnetz gesendet wird

e Job: Instanz einer Task, z.B.
— eine einzelne Ausfuhrung einer wiederholt ausgefuhrten Task
— ein einzelnes Frame einer wiederholt gesendeten Nachricht

e preemptive (unterbrechend): ein Job kann wahrend seiner Ausfiihrung
unterbrochen und spater fortgesetzt werden

e non preemptive (nicht unterbrechend): ein Job kann nicht unterbrochen
werden, sobald er gestartet wurde

e Worst Case Execution Time (WCET): max. Ausfuhrungszeit eines Jobs

e Response Time (Antwortzeit): absolute Zeit von der Aktivierung bis zur
vollstandigen Ausflihrung eines Jobs

e Worst Case Response Time (WCRT): maximale absolute Zeit von der
Aktivierung bis zur vollstandigen Ausfiihrung eines Jobs
5-29

Schedulability

Begriffe
e Deadline: maximal zuldassige Zeit bis zur vollstandigen Ausfiihrung eines
Tasks
— optional: Tasks kdnnen Deadlines haben, mussen aber nicht

o verschiedene Typen von Deadlines

— hard deadline: jede Deadline muss eingehalten werden — hard real-time
task

— firm deadline: unter bestimmten Regeln sind gelegentliche Deadline-
Misses erlaubt — weakly hard real-time task

— soft deadline: die Einhaltung von Deadlines bestimmt die Qualitat einer
Implementierung — soft real-time task
e Schedulability: ein System ist schedulable (schedulebar), wenn gilt:
— alle Jobs aller Tasks halten ihre Deadlines gemal} dem Deadline-Typ ein
— alle Jobs werden irgendwann einmal ausgefuhrt und beendet

5-30

Scheduling - Strategien

e Scheduling ist uns in der VL oft begegnet
— hier befassen wir uns systematisch damit

¢ Scheduling in Space
— exklusive Zuweisung getrennter Ressourcen: Speicherbereiche, Cores,
Busleitungen, Frequenzen, ...

e Scheduling in Time
— Zuweisung von Ressourcen zu unterschiedlichen Zeiten
e static order scheduling — zyklische Wiederholung einer festen
Reihenfolge von Tasks
e zeitgesteuertes Scheduling — zyklische Zuweisung von Zeitschlitzen
e prioritatsgesteuertes Scheduling — Zuweisung gemal} Prioritaten
e andere, z.B. budgetbasiertes Scheduling — hier nicht ndher betrachtet

— nur wenige dieser Schedulingstrategien sind in der Praxis verbreitet
¢ betrachten nur eine Auswahl, um die Prinzipien zu verstehen

5-31

Static Order Scheduling

timer

ltrigger every t, process

P, Scheduler: ;d(jlréss P(lj]
—_— for (i=1;i<=max_process;i++) r. driver
. address P2
—_— call process (process[i]);
i il 11 address PS
P wait until trigger;
2 — \/’_

e Durchlaufen einer festen Reihenfolge von Tasks und
Kommunikationsschritten

— gesteuert durch eine periodisch sequentiell durchlaufene
Prozesstabelle (vg. Kap. 4: MicroC/OS Background Tasks)

e Prozesstabelle und Tasks konnen in einen einzigen Task liberfiihrt
werden (,,inlining“), um dann mit dem Compiler optimiert zu

werden
5-32

Static Order - Verzahnung von Ablaufen in Komponenten

Pe4

ce,

pe;

J ce,
t,: scheduling period m m

architecture example

pe: processing element
ce: communication element

5-33

Static Order Scheduling - Einsatz

die exakte Sequenz unterstutzt
— verzahnte Ausfihrung (s. Beispiel)
— Pufferoptimierung (s. Kap. 2)
am besten geeignet, wenn Zeitverhalten und Steuerung von
Eingabedaten unabhangig sind
wichtige Anwendungen

— digitale Signalverarbeitung (DSP)
z.B. Codegenerierung aus SDFs (Kap 2)

— einfache Betriebssysteme (s. Kap. 4)
— Scheduling von Runnables in Containertasks (Kap. 3)

Grenzen des Static Order Scheduling
— dynamische Umgebungen: Eingaben mit Jitter
— Ausfuhrung mit datenabhangigem Zeitverhalten

Zeitgesteuertes Scheduling — statische Slotzuweisung

e Time Division Multiple Access (TDMA)
— periodische Zuweisung fester Zeitslots
— anwendbar auf pe und ce

TDMA Beispiel

5-35

TDMA Time-Partitioning

e Time-Division Multiple Access (TDMA) Scheduling entspricht einer
festen Ressource-Partitionierung (Kanaltrennung)

— Antwortzeiten werden nur vom Schedule beeinflusst, aber von anderen

Funktionen
. R; response time frame i; ty, time slot
R = C + (t;pyy — ty;)) X |——| Ciexecution/frame transmission time
Lui | tiowa TDMA cycle time

e Annahmen hierbei
— alle Sender halten sich an den TDMA Schedule
— alle Sender sind zeitsynchronisiert
— das Zeitverhalten C; wird durch den Zustand der Plattform nicht verandert
(z.B. durch Cache-Zustand, TLB, ...)
e TDMA hat begrenzte Effizienz: ungenutzte Slots kénnen nicht von
anderen Funktionen genutzt werden
— ungenutzte Ressource trotz aktivierten Tasks — nicht lasterhaltend

TDMA Beispiel

T TN i —

tpTDMA) _ - idle resource -
tP1,response =129

tesw omitted
for simplicity
= 414

tP3,response -

Scheduling and idle times in TDMA

5-37

TDMA in der Praxis

e robuste Technik

— solange die Uhren synchronisiert sind, kann die Steuerung beliebig
verteilt werden

— keine Arbitrierung erforderlich

e wichtige praktische Beispiele
— GSM Protokoll (zellulare drahtlose Netze)
— FlexRay
— Profinet
— ARINC 653 Betriebssystem

5-38

Example: ARINC 653

e Avionics - IMA

e partitions are assigned to time windows TPi iterating over a major Time
Window MAF

e execution can exceed single time window

e supports scheduling hierarchies

" I MAF 1 -
0) 10 40 50 60 80 80 100 _7120
TP1 P:40 D:10 TP3 P:120 D:30 TP: Time Partition D: Duration
TP2 P:120 D:40 P: Period

source: Ch. Ficek, Symtavision

Round-Robin Scheduling

o Vergabe ungenutzter Zeitslots
— keine Leerzyklen — hdhere Effizienz als TDMA

e im ungunstigsten Fall Antwortzeiten wie TDMA

— geeignet z.B. fur Soft Deadlines oder Funktionen mit moglichst guter
QoS (“best effort”)

— geeignet fur Kombinationen von hard real-time und anderen Tasks

¢ Unabhangigkeit der Prozesse entfallt

— Zeitverhalten komplizierter als TDMA
¢ bei Vorliegen der Zeitdaten aber berechenbar

— aber garantierter minimaler Service

5-40

Round-Robin Beispiel

e periodische Aktivierung

e ungenutzte Ressource unverziiglich freigegeben
— keine ungenutzte Ressource bei aktivierten Tasks — lasterhaltend

trr(1) - trr(2) tr(3) -
tP1,response =113 (TDMA: 129)

=168 (TDMA: 414)

tP:’z,response

Round Robin example

5-41

Round-Robin in der Praxis

¢ Round-Robin Steuerung
— erfordert Taktsynchronisation wie TDMA
— zentrale Steuerung wenig aufwendiger als TDMA

— verteilte Steuerung (Kommunikation) wesentlich aufwendiger
e welcher Sender ist bereit?
o wer ist der ndchste Sender?

¢ Beispiel flr Protokoll: Byteflight Minislots (FlexRay dynamisches Segment),
dort mit priorisierter Slotvergabe (kann durch RR ersetzt werden)

e wichtiges praktisches Beispiel
— die meisten Betriebssysteme

5-42

Prioritatsgesteuertes Scheduling

o statisch zugewiesene Prioritaten
— die Prioritat von Tasks oder Nachrichten bleibt konstant
— beliebteste Strategie in eingebetteten Systemen (neben TDMA)
— static priority preemptive (SPP)
¢ Beispiele OSEK/VDX, AUTOSAR
static priority non preemptive (SPNP)
¢ Beispiele CAN, OSEK/VDX, AUTOSAR

¢ dynamisch zugewiesene Prioritaten
— Task oder sogar Job Prioritaten zeitlich variabel

5-43

Scheduling mit statischen Prioritaten

¢ wir werden uns im Folgenden auf periodische Aktivierung beschranken

— Modell 1
e Deadlines am Ende der Periode

— Modell 2
e Deadlines vor dem Ende der Periode

— Modell 3
¢ beliebige Deadlines

5-44

Rate Monotonic Scheduling (RMS) — Modell 1

e zugrunde liegendes Taskmodell
— periodische Aktivierung unabhangiger Tasks
— Deadline am Ende der Taskperiode
— WCET jeder Task ist bekannt
e Prioritaten werden gemaR Periode zugewiesen
— kirzere Periode — hohere Prioritat - ,Rate Monotonic”

— beweisbar optimaler Schedule fur Singlecore-Prozessoren

e optimal: wenn nicht mit RMS schedulebar, dann gar nicht schedulebar unter
SPP

— Prioritat ist ein Parameter des Scheduling und bedeutet nicht Wichtigkeit!
¢ wird breit verwendet, da einfach und leicht analysierbar

— eingefuhrt von Liu und Layland 1973

Rate Monotonic Scheduling (RMS) - 2

¢ Erweiterungen fiir Multiprozessoren und abhangige Prozesse verfiigbar

e asynchrone Prozesse mit maximaler Wiederholrate konnen in Analyse
einbezogen werden (dann nicht optimal)

e Verwandtes Verfahren fiir Modell 2:
Deadline Monotonic Scheduling (DMS):

— Deadline liegt vor dem Ende der Periode
— kurzere Deadline — hohere Prioritat

— hier nicht weiter betrachtet

5-46

Rate Monotonic Scheduling (RMS) - 3

Theorem 1 (Liu/Layland 73):
Ein System von n unabhangigen Tasks, deren Prioritat durch RMS bestimmt
ist, wird immer dann alle Deadlines erreichen, wenn gilt (hinreichend):

S T +%:U(n)£n(21/” ~1)

n

wobei: C,, T, Laufzeit und Periode des Tasks i

lim (U(n)) =In2=0,69 U: Utilization

n— o

5-47

Rate Monotonic Scheduling (RMS) - 4

e Beispiel 1

P1:C1=20us, T1=100us Ul=0,20
P2: C2=40us, T2=150us U2=0,27
P3: C3=100us, T3 =350us U3=0,29

G.6
I 1,
0,2+0,27+0,29=0,76

3(2"° -1)=0,779

0,760,779 = Bedingung erfiillt

+ o +§"=U(n)£n(21/”—1) ?

n

Anderung: C1 =40us = U1 =0,4
0,96 > 0,779 = Bedingung nicht erfullt, Schedule nicht garantiert

5-48

Rate Monotonic Scheduling (RMS) - 5

e Theorem 2 (Liu/Layland 73):

— Gegeben eine Menge von n unabhangigen Tasks, deren Prioritat durch
RMS bestimmt ist, und die zur selben Zeit aktiviert werden
- critical instant

— Wenn jede Task ihre erste Deadline erreicht, dann werden alle kiinftigen
Deadlines immer und fur jede Kombination von Startzeiten eingehalten.

— notwendig und hinreichend (fur C, = WCET,)

5-49

RMS Scheduling Beispiel

e Beispiel la alle Deadlines erreicht!

P1: C1 =40us, T1=100us
P2: C2=40us, T2=150us
P3: C3 =100us, T3 =350us

5-50

Rate Monotonic Scheduling (RMS) - 5

e Beobachtung: Zu jeder Zeit t betragt die gesamte angeforderte
Ressourcenzeit (Service)

Wn(t):C1(%—‘+C2(_I_L2—‘+ +C”(TL—‘

¢ Im Beispiel:
- W;5(0+)=C1+C2+C3
— W,(T1+)=2"C1+C2+C3
— W;(T2+)=2"C1 +2*C2 + C3

/ alle drei Tasks erstmals aktiviert
[Task P1 zum zweiten Mal aktiviert
| Task P2 zum zweiten Mal aktiviert

die angeforderten Ressourcen wurden zum Zeitpunkt t vollstandig
bereitgestellt, wenn gilt
t=W,(1)

ausgehend vom Critical Instant miissen wir nur den ersten Zeitpunkt
finden, wo die Gleichung gilt (Fixpunktproblem) — ,,Busy Window*

5-51

Model 3: Beliebige Deadlines

Analyse verallgemeinert das ,,Busy Window*- Verfahren (auch ,,Busy Period“)

Prioritat
o
o V_:*:

ré‘ __?
f T, f-
I
eh T =
Finde die WCRT R >

5-52

Bestimmung der WCRT von P2

T e
5 N S
S | ——
o i iw2(3) : .
< 2*T, € R,(3) = ’i
; . 7 MO o o
2 > T, Q_
w; (6 wieder Fixpunkt-
. q C; -+ Z C; }(1) gleichung
j€hp(3) J
suche max. R, fur
“' — alle q
hier: R,(3)
5-53

Static Priority - Prioritatsinversion

e Priority Inversion Problem

— tritt bei gegenseitigem Ausschlul® z.B. bei Zugriff auf gemeinsame
Daten oder Ressourcen (Interfaces) auf

— Task P1 niederer Prioritat kann dann héherprioren Task P2 fur eine
unbestimmte Zeit verzdgern

o Beispiel fur invertierte Prioritat:
— P1 hohere Prioritat als P2 hohere Prioritat als P3

— P3 greift auf Semaphore S zu, blockiert S und tritt dann in einen kritischen
Bereich ein

— P1 wird bereit, wird ausgeflihrt und greift auf Semaphore S zu. Da S blockiert ist,
wartet P1.

— P2 wird bereit. Da P2 hohere Prioritat als P3 besitzt, wird P3 unterbrochen und P2
fortgesetzt usw.

— P1 verfehlt seine Periode

5-54

Priority Ceiling Protocol - PCP

e Ansatz: Priority Ceiling Protocol (PCP)
— S erhalt eine Prioritat und zwar so hoch, wie der hochste auf S
zugreifende Task

— wenn ein Task auf S zugreift und blockiert, erhalt er die Prioritat von S

e Theorem 4 (PCP):
Das PCP vermeidet Deadlocks. Ein hdherpriorer Task kann hoéchstens ein
Mal durch einen niederprioren Task blockiert werden.

R + R, WCRT of task i
R = C + ch N [i S max (Bk) Ti period (or minimum activation
T. kehp(i) distance)
J C, WC execution time (WCET)
hp(i) higher priority messages
B,: Blocking time
fur Deadline am Ende der Periode
(a=1)

Jehp(i)

5-55

RTOS Overhead

Example: Static priority scheduling with ERCOSEK™
tA,resp

>
>

A S

|

|

| 1

| - B — 5
- |]] s I
drem | |

| .

|

|

tt

ph start

ph stop

4 term

B act

bl

B term

tB,resp

RTOS overhead increases response times

5-56

RTOS and scheduling effects combined

|:A,resp — tA,resp

\ 4
-k
>
=
[1]
[7]
T
A\ 4

tr

ph start

ph stop

L act

al

E act

hl

E term

C act

cl

I

I

I

L

I | |

4 term I r] I H i : n

I ‘ i
I

I

I

I

I

C term

tB,resp o—r 1:B,resp c—r

5-57

Statische Prioritaten in der Praxis

e Statische Prioritaten in der Kommunikation
— vergleichbar TDMA kennen alle Sender ihre Prioritat im Voraus
— keine Taktsynchronisation erforderlich
— Zugriffsprotokoll benotigt

o Statische Prioritaten konnen beliebig erweitert werden, solange freie
Prioritaten verfugbar sind

e niemals Leerlauf, solange ein aktivierter Task vorliegt — lasterhaltend

e wichtige praktische Beispiele
— CAN
— OSEK/AUTOSAR
— (standard PC I/O-bus standards)

5-58

Beispiele: Scheduling in OSEK/VDX und AUTOSAR

static priority preemptive scheduling (SPP)
— kann auf ,Preemption Points*
beschrankt werden
3 Prioritatsblocke
— interrupt — scheduling — task level

task level mit periodischen Tasks
— Rate Monotonic Scheduling

— Aktivierungs-Offsets fur verringerte
Spitzenlast (verandert Critical Instant)

PCP Protokoll

priority

interrupt level
activated by interrupt

logical level
scheduling activities

source: OSEK/VDX standard V2.2.3

Dynamische Schedulingverfahren

Erreichen Auslastung bis U = 1 durch dynamische Anpassung der
Prioritaten an die aktuellen Deadlines und Prozesse

Ansatz im Einzelprozessor: Earliest Deadline First (EDF)
Der Prozel wird ausgeflhrt, der die kiirzeste Deadline besitzt

EDF erfordert Scheduling zur Laufzeit

(vgl. Rechnerarchitektur: dynamisches Befehlsscheduling)

bei bekannter Last lassen sich auch fur EDF Schedulability Analysen

durchfiihren

— spielt in der Praxis eingebetteter Systeme aber eine geringere Rolle als

Verfahren mit statischen Prioritaten

— beliebtes Verfahren in der Schedulingtheorie

e gute Ansatze flr Multicore-Systeme

5-60

5.4 Globales Systemverhalten und seine Analyse

e bei periodisch aktivierten Tasks wird die Last im Modell durch die
Komponente selbst bestimmt

— periodische Aktivierung — kein Einfluss von Ereignissen am Eingang

— Ressourcennutzung wurde zu WCET oder den ungunstigsten Trace
abstrahiert

— Effekte des Scheduling, z.B. WCRT oder ET*(n), kdnnen lokal bestimmt
werden

— die Scheduling-Effekte von Systemen mit ausschliel3lich periodischer
Last sind composable
e bei Aktivierung durch Ereignisse muss das Verhalten vorangehender
Komponenten beriicksichtigt werden
— erfordert Analyse auf Systemebene

— typisch fur reaktive Systeme und Kommunikationsnetze (daher Network
Calculus)

— die Scheduling-Effekte solcher Systeme sind nicht composable
— aber: es gibt Methoden zur Erzielung von Compositionality

5- 61

Timing Model Hierarchy fiir globale Analyse

system timing model

— performance of components integrated
in a network

e

o task timing model
| ‘ ‘ — execution load and timing |
— communication load and timing |

5- 62

Global system analysis using compositional approach

¢ independently scheduled subsystems are coupled by data flow

= subsystems coupled by streams of data

= interpreted as activating events

= coupling corresponds to event propagation

comp 1 comp 2
(eH— || | (P, —
NN NN
(7)) -l (7)) :
% AL
scheduling scheduling
comp 1 event stream comp 2

5-63

Compositional analysis principle

environment model

Symbolic
Simulation — — — — | |ocal analysis
or RTC
find fix point derive output event model

where input and

output models
converge map to input event model

until convergence or non-schedulability -

!

5- 64

System-level Analysis Results

e end-to-end latencies

e buffer sizes
example: complex end-to-end

e system load latency analysis w. SymTA/S

[[_from sensor | | to actuator]|

B0 0
A >
- Aoy
== r’ = | _5 -
. []
_— .E‘..__._u £ i
~== st — (7] 3 » !
L o - e _ - -
e e 3 4

|| gateways with additional
delay and buffering

\]| buses with synchronous and
source: \ asynchronous communication

Symtavision

|| inter-task communication with

over- and under-sampling 5- 65

Gewinnung der benaotigten Daten

e Test mit Simulation/Prototypen
— Simulation setzt Verfugbarkeit von Modellen voraus — oft nicht der Fall

— Prototyping erst spat im Entwurf mdglich oder mit Komponenten mit
anderem Zeitverhalten
— Anwendungen und Architekturen mit vielen zeitlichen Abhangigkeiten sind
grofke Herausforderung und erfordern bei Anderungen Wiederholung des
Testaufwands
requl T————— ccoplamcniest
\© /
e—

model mmmm —nn/—[model

development \ integration

& simulation pl_,—_- & simulation

Iprototyping Iprototyping
.

model&pattern transfer

Gewinnung der benotigten Daten

e Formale Worst Case Modelle
— haupts. fur kritische Anwendungen
— genaue Modelle fur analytische Verfahren (u.a. Fa. Absint) fehlen oft

e Observed Worst Case Modelle
— Messung der WCET im Prototypen oder auf einem Simulator
— deutlich héhere Zuverlassigkeit der Messung als im komplexen Systemtest

recquircments wcceplance lesl

\C& /

sysiens designt = ————s Eysiem best

observed \ (@ / observed
worst case = M worst case

in simulation model

or prototyping ~—/ integration
(e.g. trace observed and analysis
analyzer) worst case (e.g. SymTA/S)

execution data

Daten aus Traces — Trace Based Analysis

o fur genauere Workload-Modelle werden Traces benotigt
— Messung von Worst Case Execution Traces

o formale Methoden basierend auf dem Busy-Window-Verfahren und der
globalen Analyse verfligbar

— nutzt worst case execution trace (formal oder observed)
— wesentlich weniger konservativ als die Worst Case Analysis

e guaranteed behavioral bounds
— sofern der Trace requicmets —-—-—-—- » accoptance tost

den Worst Case enthalt \@ O/

Stest
model \@ 0’!
developmeni\ =boyst=mdesign _—» Integration /' trace based

& simulation \ @ O/ — worst case

Iprototyping """"":; = ﬁwﬂ model

integration
N/ and analysis
observed worst case execution trace (€-9- PYCPA)

5-68

5.5 End-zu-End Latenzen und Wirkketten

Verbliebene Frage:

e Beeinflusst das Zeitverhalten die Funktion?
— werden globale Deadlines der Anwendung erreicht?
— wird die Funktion durch das Zeitverhalten beeinflusst?

o unterschiedliche Effekte bei Zeit- und Ereignisaktivierung

e Ereignisaktivierung
— aus der Response Time lasst sich die Latenz pro Komponente bestimmen
— die Summe aller Komponentenlatenzen ergibt die Gesamtlatenz
— dabei konnen Sondereffekte genutzt werden (,Pay Burst Only Once®)
— compositional

Wirkketten in zeitgesteuerten Systemen

e Ende-zu-Ende-Verhalten in zeitgesteuerten Systemen ist deutlich
komplizierter
— Registerkommunikation fihrt zu Uberschreiben von Werten

— Uberschreiben und Lesen ist abhangig vom Lese- und Schreibzeitpunkt
— abhangig von den Antwortzeiten der Komponenten

Sig_from_Sensor
el ay agdlfrom_tdnsar: 1% 4 B 3 7 2 a 0 1 1z 13 14 15 16
10ms Tosk e | T R U e O e O A A
; ! 4 5 ! i 8
20ms_Task ECL1 Ji: Ji: Ji:
s e | I N T B]
1 2
- -L_l - +
100ms_Task ECU 3 |: PERETE
wirt: 45 2636
Sig_100ms ECL1
1 el for S L‘ !
H0ms_Task ECi i |: :| T |: :l ;FX?—_
Overall Delay !
oerall delzy for Max Age: 1693626
t

Kommunikation bei zeitaktivierten Tasks

= typische Vorschrift fur Datenkonsistenz
» Lesen der kommunizierten Daten am Anfang einer Task
= Schreiben der kommunizierten Daten am Ende der Task

= atomarer Ablauf: oft mit Locks (Semaphore) geschiitzt — siehe PCP Protokoll

Task 1 .

Shared Data

Task 2 []

» Kommunikation zeitabhangig

» wird ein Task frUher/spater beendet, kann ein friherer/spaterer Wert gelesen
werden

= erfordert Wirkkettenanalyse - compositional

= andert sich mit dem Softwarestand, dem verwendeten Prozessor, ...
5-71

Wirkketten und Multicore-Architekturen

e in Multicore-Architekturen entstehen komplizierte Zeiteffekte
— durch Zerlegung von grof3en Container-Tasks
— durch Parallelverarbeitung

o erfordert Synchronisation der Runnables f;

split fo | fo |)| oo (o | Fo f, | f,
1

Forderung Synchronisation der Kommunikation

¢ die libliche Synchronization von Zugriffen uber Mutex-Variable flihrt zu

Blockierungseffekten (z.B. mit Multicore-Erweiterung von PCP), die Jitter
und Antwortzeit erhohen (Diss. Negrean)

o stattdessen wird eine nicht blockierende (lock-free) Synchronization der
Zugriffe Uber feste Zeitmarken angestrebt

— die Kommunikationszeitpunkte werden Teil des Implementierungsmodells

Wichtiges Verfahren fur zeitgenaue Kommunikation: LET

e ,Logical Execution Time" Paradigma (LET)
— Trennung von Berechnung und Kommunikation
— kommuniziere nur zu festen Zeitpunkten — LET Marken
— kommunizierte Werte sind unverziiglich fir alle Tasks verfugbar At =0

(vgl. synchrone Automaten)

ubliche Taskausfuhrung:
Bounded Execution Time (BET)
aktiviert zum Zeitpunkt t;

Taskausfuhrung mit

Logical Execution Time (LET)
Lesevorgang exakt zum Zeitpunkt ty ;
Schreibvorgang exakt zum Zeitpunkt t, ;

t

}

trwi < twerri

- - - .

twerr,i '
1R,i tV\i,i
llr] ; E—— - [
twerr, " delayed
write

5-74

Bewertung LET

LET fiihrt zu deterministischer Kommunikation wie im Fall von
synchronen Automaten

LET macht das Zeitverhalten sogar composable
— gut fur inkrementellen Entwurf, Reuse oder Updates

LET ist lasterhaltend

die Forderung At = 0 fiir die Kommunikation ist so nicht erfullbar

— praktische Umsetzung z.B. Uber Doppelpuffer, nicht ganz einfach bei
Multicore

LET muss maximale Latenzen annehmen
— composability geht auf Kosten der erreichbaren Ende-zu-Ende Latenzen
— Anpassung der LET Marken an die Architektur
— spezielle Schedulingverfahren mit dynamischer Prioritat (,Priority Boosting®)

erste Multicore-Implementierungen mit LET in der Industrie

aktives Forschungsthema fiur den Systementwurf

Zusammenfassung

Kap. 5 hat nur einen kleinen Einblick in die vielfaltigen Modelle und
Schedulingstrategien der eingebetteten Systeme geben kénnen

die Ereignismodelle fiir die Schedulingverfahren sind kompatibel zu
den Modellen der Funktionsarchitektur

die systematische Integration von Funktionen auf einer
Ausfiuhrungsplattform erfolgt heute zunehmend unter Verwendung
dieser formalen Modelle

— erhoht die Sicherheit im Entwurf, vor allem bei Multicore

— neuere Architekturen machen die zeitliche Vorhersage aber schwieriger

— formale Modelle ermdglichen die Ableitung von Monitoren zur
Laufzeituberwachung (s.a. Kapitel 6)

Forschungsthemen liegen unter anderem in neuen Modellen fur
probabilistische und weakly-hard Systeme und in einer systematischen
Abhangigkeitsanalyse

im Prinzip ware mit den Methoden auch eine automatisierte Abbildung
von Funktionen auf Plattformen moglich

— ist aber (noch) nicht Stand der Technik
5-76

