
Laborpraktikum: Software Debugging in
eingebetteten Echtzeitsystemen

Praktikumsskript

Laurenz Borchers, Kai-Björn Gemlau, Sebastian Abel, Tim Smektala

19. März 2025

Inhaltsverzeichnis

1. Einleitung 1
1.1. Motivation . 1

1.2. Lehrziel . 1

1.3. Anwendungsfall . 2

2. Hardware und Aufbau 3
2.1. Hardware . 3

3. Grundlagenwissen 5
3.1. Echtzeitsysteme . 5

3.2. Debugging . 5

4. Coding Guidelines 8
4.1. Regeln . 8

5. Aufgabe 1 11
5.1. Wissen . 11

5.2. Pre-Kolloquium . 13

5.3. Aufgabenstellung . 14

6. Aufgabe 2 18
6.1. Wissen . 18

6.2. Aufgabenstellung . 18

6.3. Post-Kolloquium . 20

7. Aufgabe 3 22
7.1. Wissen . 22

7.2. Pre-Kolloquium . 29

7.3. Aufgabe . 30

7.4. Post-Kolloquium . 32

8. Aufgabe 4 33
8.1. Wissen . 33

8.2. Pre-Kolloquium . 35

8.3. Aufgabe . 35

8.4. Post-Kolloquium . 39

9. Aufgabe 5 41
9.1. Wissen . 41

4 Inhaltsverzeichnis

9.2. Aufgabe . 43

10. Aufgabe 6 45
10.1. Tracing . 45

10.2. Lauterbach-Wissen . 49

10.3. Aufgabenteil 1 . 52

10.4. Aufgabenteil 2 . 54

11. Aufgabe 7 56
11.1. Aufgabenteil 1 . 56

11.2. Aufgabenteil 2 . 57

Akronyme 59

A. Anhang 60

Literaturverzeichnis 62

1. Einleitung

1.1. Motivation
Im Programmieralltag wird man immer wieder damit konfrontiert, dass Software nicht

einwandfrei funktioniert. Neben der Tatsache, dass es bei bei größeren Projekten schnell

unmöglich wird den Fehler nur durch Analyse des Quellcodes zu finden, kommt es vor

allem in eingebetteten Systemen vor, dass nicht immer Fehler in der Programmiersyntax

oder -Logik vorliegen. Dabei geht es um Fehler, die nicht beim Kompilieren oder Linken

des Programms auftreten, sondern erst zur Laufzeit der Anwendung. Um ein Programm

zur Laufzeit zu debuggen gibt es mehrere Möglichkeiten. Dieses Praktikum wird Ihnen

die klassischen Debug-Varianten darlegen und an Beispielen nachvollziehen lassen um

diese Fehler effizient zu finden und zu korrigieren.

Dazu werden zunächst die Grundlagen des Programmbaus vom C-Code zum Maschi-

nencode und zur Makefile behandelt, um später auftretende Fehler richtig einordnen und

beheben zu können. Außerdem wird ein Grundverständnis von Betriebssystemen für ein-

gebettete Systeme vermittelt.

Im nächsten Teil des Praktikums werden Ihnen Grundlagen des Software Debuggings

von eingebetteten Systemen dargelegt und praktisch auf die entsprechende Probleme an-

gewandt. Dabei werden Sie lernen, welche Vor- und Nachteile die einzelnen Debugme-

thoden haben und wann es sinnvoll ist, welche Debugmethode zu verwenden. Die Arten

des Debuggings, die in diesem Praktikum behandelt werden beinhalten Printf Debug-

ging, Debugging via Programmablauf-Counter/Single-Stepping, die Nutzung von Break-

/ Trace- und Watchpoints, die Nutzung direkten Speicherzugriffs zur Laufzeit des Pro-

gramms und Möglichkeiten und Anwendung des Tracing. Die Aufgaben fördern das Ver-

ständnis zur Arbeitsweise eines Betriebssystems vor allem in Bezug auf Tasks und deren

Zustände, Scheduling und das Wissen um das Zeitverhalten in Echtzeitsystemen. Im Laufe

der Veranstaltung wird auf Inter-Core Kommunikation in Multicore-Systemen eingegan-

gen.

1.2. Lehrziel
Die Studierenden kennen am Ende des Praktikums die klassischen Varianten des Software

Debuggings von eingebetteten Systemen. Sie können mit Software Debugging Verfahren

wie zum Beispiel JTAG Debugging umgehen, kennen sich mit der Lauterbach Debugum-

gebung aus und wissen, welche Möglichkeiten sowie Vor- und Nachteile die jeweiligen

2

Debugmethoden mit sich bringen. Sie sind in der Lage Probleme zu beurteilen und die

am besten geeigneten Methoden des Debuggings auf diese anzuwenden.

1.3. Anwendungsfall
Das Praktikum vermittelt seinen Lehrinhalt an einem Anwendungsfall. Es soll die Soft-

ware für einen sich selbst balancierenden zweirädrigen Roboter entwickelt werden, der

nach dem Vorbild eines Segways funktioniert. Der Roboter soll selbstständig sein Gleich-

gewicht halten und seine Position über eine Eingabe durch Fahrbewegung verändern

können. Die dafür benötigte Hardware ist bereits vorhanden und wird den Studierenden

zur Verfügung gestellt. Dazu sollen zu den Praktikumsterminen einzelne Komponenten

entwickelt, beziehungsweise zum Teil vorgegebene Software mit Lauterbach-Debuggern

debuggt werden. Die Roboterhardware wird über ein Zynq-7000 Board angesteuert. Die

Teilnehmer müssen eine inertiale Messeinheit auswerten und die ausgewerteten Daten

in Echtzeit verarbeiten. Die daraus berechnete benötigte Lagekorrektur des Roboters wird

an die Motortreiber übermittelt. Hintergrund dieses Anwendungsfalls ist die gegebene

Nähe zum Auslesen von Sensorik, Echtzeitverarbeitung von Daten, sowie Parallelen zur

Automobilindustrie im Bereich der Multiprozessor-Datenverarbeitung im späteren Ver-

lauf des Praktikums.

2. Hardware und Aufbau

2.1. Hardware
Der Aufbau und die Zusammenhänge der Hardwarekomponenten sind in Diagramm 2.1

dargestellt. Der Debugger Lauterbach PowerDebug Pro mit der Erweiterung PowerTrace-

II ist ein leistungsfähiges Debugging-System. Besonderheiten sind unter anderem die

eingebauten Features zum Debugging von Echtzeitbetriebssystemen und die umfangrei-

chen Trace Funktionen. Genauere Informationen zum Lauterbach Debugger finden sich

in der Quelle [lau].

Zynq-7000 mit ARM
CPU

PC

Lauterbach-Debugger
Flashen +
Debuggen

Sensorik +
Aktorik Roboter

serielle Schnittstelle
Bedienung über Interface,

Netzwerk

Abbildung 2.1.: Komponenten und Zusammenhänge des Versuchsaufbaus im Praktikum

Das Xilinx ZC706 Evaluation Kit ist auf das Entwickeln mit dem SoC Zynq 7000 opti-

miert. Das SoC ist mit einem Dual Core ARM Cortex A9 Prozessor ausgestattet. Außerdem

findet sich ein FPGA in dem System, welcher eng mit dem Hauptprozessor zusammen ar-

beitet, um etwa die Ansteuerung der GPIOs flexibler zu gestalten (siehe Abbildung 2.2).

Genauere Informationen zum Xilinx Zynq-7000 SoC ZC706 Evaluation Kit finden sich in

der Quelle [zc7, Xilinx ZC706].

4

Abbildung 2.2.: Nutzung des Programmable Logic Controllers im Zynq7000 SoC

3. Grundlagenwissen

3.1. Echtzeitsysteme
Ein Echtzeitsystem wird nicht durch seine Schnelligkeit definiert, sondern durch das Ein-

halten von Zeitschranken und damit verbundene Rechtzeitigkeit. Das Ergebnis der Berech-

nung eines Echtzeitsystems ist nur dann brauchbar, wenn es rechtzeitig vorliegt. Echt-

zeitanforderungen können in harte und weiche Echtzeitanforderungen unterschieden wer-

den. Entsprechend Ihrer Betitelung sind harte Anforderungen unter allen Umständen ein-

zuhalten, da sonst das Ergebnis des Systems als nicht brauchbar gilt. Als Beispiel hierfür

gilt die Auslösung des Airbags im Auto. Weiche Echtzeitanforderungen hingegen werden

durch die bei ihrer Verletzung verursachten Kosten definiert. Je stärker die vorgegebe-

ne Zeitschranke verletzt wird, desto höher fallen die damit verbundenen Kosten in Form

von Rechenzeit oder materiellem Verlust aus. Die Eigenschaft der Gleichzeitigkeit impli-

ziert die korrekte Verarbeitung paralleler Arbeitsabläufe. Als Beispiel kann die Regelung

der Lage des im Praktikum verwendeten Roboters gesehen werden, der Bewegungssensor-

daten und Motorsteuerung gleichzeitig bearbeiten muss. Diese Aufgaben werden in Form

von Tasks umgesetzt. Wichtig ist dabei, dass ein höherpriorer Prozess einen niederprio-

ren Prozess verdrängen kann (preemptiv), und dass das System nicht überlastet ist. So wird

Vorhersagbarkeit garantiert.

3.2. Debugging
Es gibt nicht nur eine bestimmte Methode des Debuggings, sondern mehrere Möglich-

keiten. Sie unterscheiden sich in ihrer Leistungsfähigkeit, dem Anwendungsgebiet, den

Kosten, den Anforderungen an die Hardware und auch in der Pinanzahl. Außerdem gibt

es große Unterschiede in ihrem Einfluss auf das Zeitverhalten des Debuggee (zu debug-

gendes System). Die einfachste Möglichkeit einen Einblick in ein laufendes Programm zu

bekommen, ist die Ausgabe von Variablen zur Laufzeit über eine serielle Schnittstelle. Das

Printf Debugging ist simpel und reicht für einfache kleine Programme ohne Taskstruk-

tur und ohne strikte Anforderungen an Echtzeitfähigkeit aus. Die nächst-mächtigere Me-

thode des Debuggings stellt JTAG-Debugging dar. Es ermöglicht die Steuerung des Pro-

grammablaufs via Single-Stepping, also das kontrollierte Anhalten des Programms und

das Setzen von Halte-, Verfolgungs- und Überwachungspunkten. Außerdem ermöglicht es

den vollständigen Lese- und Schreibzugriff auf den Speicher des Programms. Mit diesen

Werkzeugen lassen sich einfach Fehler finden und beheben. Problematisch wird es dann,

wenn unvorhergesehene Fehler zur Laufzeit auftreten, deren Ursprung und Wirkung im

Code entweder zeitlich oder programmierhierarchisch weit auseinander liegen. Die bis-

6

her bekannten Debugmethoden können ihre Möglichkeiten aufgrund für den Menschen

schwierig erkennbarer Zusammenhänge nicht ausspielen, was die Fehlersuche sehr er-

schwert. Außerdem ist es auch hier nahezu unmöglich, das Zeitverhalten des Programms

umfangreich zu analysieren. An dieser Stelle hilft es Trace-Tools als Debugmethode zu

verwenden. Zusätzlich zur Steuerung der CPU wird nun der Programmablauf teilweise

oder vollständig aufgezeichnet. Aus diesem kann dann wahlweise auf Assemblerebene

bis hin zum Ablauf in der Hochsprache nachvollzogen werden in welcher Reihenfolge

das Programm ablief. Diese Daten helfen zu rekonstruieren wo das Programm anders

als gewünscht ablief und ermöglichen es den Stand des Programms vor dem Absturz zu

betrachten und damit auch eine mögliche Fehlerquelle zurück zuschließen.

3.2.1. Debugging-Prozess
Um Programme zu debuggen, sollte zunächst definiert sein, was ein Fehler ist und wie

an ihn herangegangen wird. Der Begriff Fehler ist im Deutschen mehrdeutig belegt und

lässt sich mit Hilfe der englischen Begriffe differenzierter betrachten (siehe Abbildung

3.1). Ein Error ist ein nicht korrekt programmierter Code oder eine falsch implementierte

Nutzeranforderung. Dieser Error im Programmcode kann einen Fault auslösen. Es kann

sich zum Beispiel um einen Speicherüberlauf handeln. Der Fault muss nicht nach außen

sichtbar sein. Das extern zu beobachtende Fehlverhalten des Systems wird Failure genannt.

Ist ein Failure erkannt worden, muss die Stelle im Quellcode gefunden werden, die den

Fault auslöst und den Error beschreibt. Die Ursache des Fault muss analysiert und korri-

giert werden. Sollten mehrere Fehlverhalten gleichzeitig auftreten, deren Symptome sich

überlagern, kann es vorkommen, dass die Betrachtung eines einzelnen nicht funktionie-

renden Programmteils alleine nicht zur Lösung des Problems führt. An dieser Stelle kann

viel Zeit gespart werden, indem nicht sofort versucht wird herauszufinden was nicht rich-

tig arbeitet, sondern was überhaupt funktioniert. Je konsequenter das Programm in mo-

dularisierter Form geschrieben wurde, desto einfacher und schneller geht dieser Schritt

vonstatten. Es ist möglich Eingabedaten in ihrer Größe oder in ihrem Inhalt zu variieren,

um ihren Einfluss auf Fehler zu untersuchen. Es sollten Hypothesen zur Fehlerursache

aufgestellt und das Programm systematisch darauf getestet werden. Sofern es sich nicht

um triviale Fehler handelt, ist es sinnvoll, das Wissen um die Ursache des Fault festzuhal-

ten, um den Hergang des Problems sowie seine Lösung zu dokumentieren.

3.2.2. Grundlagen des Debuggens eingebetteter Systeme
Debugging in der Softwareentwicklung für Desktopanwendungen ist wesentlich zugäng-

licher und komfortabler als im Kontext der eingebetteten Systeme. So programmieren

die meisten Anwendungsentwickler auf den Systemen, auf denen die von ihnen entwi-

ckelte Software später auch ausgeführt wird. Die Steuerung des Programmablaufs, das

Betrachten von Variablen und andere Debugwerkzeuge sind ohne große Umwege nutz-

3.2. Debugging 7

bar. Um eingebettete Systeme zu programmieren, kommt oft die Technik des Cross-Com-

pilings und des Cross-Debuggings zum Einsatz. Es wird also nicht auf der Zielhardware

kompiliert und debuggt, sondern auf einem Anwendungscomputer. Das zu programmie-

rende System hat eventuell nicht ausreichend leistungsfähige Hardware, um ein Anwen-

derbetriebssystem samt Entwicklungsumgebung auszuführen oder es ist schlicht nicht

gewünscht das System zu beeinflussen. Auch die Architektur der Systeme unterscheidet

sich für gewöhnlich. Diese Trennung von Entwicklungsplattform und Laufzeitplattform

erschwert die Beobachtbarkeit und Steuerbarkeit eingebetteter Systeme und verkompli-

ziert somit deren Debugging. Dennoch ist die Anwendung von Debugging notwendig,

weil es unter Umständen zu Fehlern kommt, die erst während der Laufzeit des Systems

auftreten, deren Entstehung aus dem Code nicht ersichtlich ist oder das Projekt zu um-

fangreich ist.

Error

Failure

Fault

Abbildung 3.1.: Entwicklung eines Fehlers: Error->Fault->Failure

4. Coding Guidelines

4.1. Regeln
Im folgenden finden Sie einige Regeln wie der C-Code in diesem Praktikum formatiert

sein muss. Sauber strukturierter Quellcode trägt entscheident dazu bei, dass Fehler ent-

weder von vorneherin vermieden werden oder beim Debugging leichter eingrenzbar sind.

4.1.1. Modul- und Funktionsnamen
Ein Modul (z.B. eine C-Datei mit Funktionen die als Gruppe eine Teilfunktion erfüllen)

hat einen prägnanten Namen. Dieser wird sowohl im Dateinamen verwendet, wie auch als

präfix für alle Funktionen und Variablen. Beispiel: Die Datei ’imu.c’ soll soll alle Funk-

tionen zum auslesen der IMU enthalten. Diese heißen dann entsprechend ’imu_init()’,

’imu_readGyro()’ usw. und nutzen globale Variablen wie ’imu_config’

4.1.2. Interne Funktionen und Variablen
Als Grundsatz gilt: Alles was nicht für andere Module als Interface nötig ist wird mit ’static’

und einem Unterstrich als Präfix versehen. Somit ist es nur innerhalb dieser einen C-Datei

bekannt und es wird klar wie die Schnittstellen nach außen aussehen.

1 /∗∗ Dies ist eine interne variable ∗/

2 static int32_t _internalTimerCount;

3 /∗∗ Dies ist eine interne Funktion ∗/

4 static void _imu_handleError(int err);

Quellcode 4.1: Deklaration von static Variablen und Funktionen

4.1.3. Kommentare
Jede Funktion bekommt einen Kommentar im Doxygen-Stil, der den Inhalt der Funktion

sowie ihre Parameter und Rückgabewerte beschreibt.

1 /∗∗∗/

2 /∗∗
3 ∗ This function initiates an interrupt−driven receive in master mode.

4 ∗
5 ∗ It sets the transfer size register so the slave can send data to us.

6 ∗ The rest of the work is managed by interrupt handler.

4.1. Regeln 9

7 ∗
8 ∗ @param InstancePtr is a pointer to the XIicPs instance .

9 ∗ @param MsgPtr is the pointer to the receive buffer .

10 ∗ @param ByteCount is the number of bytes to be received.

11 ∗ @param SlaveAddr is the address of the slave we are receiving from.

12 ∗
13 ∗ @return None.

14 ∗
15 ∗ @note This receive routine is for interrupt−driven transfer only.

16 ∗
17 ∗∗/

18 void XIicPs_MasterRecv(XIicPs ∗InstancePtr, u8 ∗MsgPtr, s32 ByteCount,u16 SlaveAddr){

19

20 }

Quellcode 4.2: Beispielhaftes Doxygen Kommentar aus der Xilinx Libary

4.1.4. Aufbau der C-Datei
Jede C-Datei hat einen klaren Aufbau der sich in die Bereiche “Includes”, “Inputs”, “Out-

puts”, “interne Variablen”, “interne Konstanten”, “interne Funktions-Prototypen” und die

eigentliche Implementierung aufteilt. So ist klar ersichtlich wo man eingreifen muss um

z.B. konstante Parameter zu verändern.

1 /∗∗ Includes ∗/

2 #include " h"

3

4 /∗∗ module input variables ∗/

5 extern int16_t accData [3];

6

7 /∗∗ module output variables ∗/

8 int32_t pidValue=0;

9

10 /∗∗ module internal variables ∗/

11 static float _pid_errorSumAngle=0;

12

13 /∗∗ module internal constatns ∗/

14 const int16_t ACC_MIN[3] = {−10, −20, −30};

15

16 /∗∗ internal function prototypes ∗/

17 static int16_t _pid_map(int16_t x, int16_t in_min, int16_t in_max, int16_t out_min, int16_t out_max);

18 ...

19 /∗∗ functions ∗∗/

20 void pid_init (void) {

21 ...

22 }

23

24 static int16_t _pid_map(int16_t x, int16_t in_min, int16_t in_max, int16_t out_min, int16_t out_max){

10

25 ...

26 }

Quellcode 4.3: Aufbau einer C-Datei

5. Aufgabe 1

Die in dem Skript stehenden Aufgaben dienen der Anweisung was programmiert wer-

den soll. Zusätzlich zu den Programmieraufgaben halten Sie Ihre Ergebnisse in dem vor-

gefertigten Dokument doku.odt fest. Dieses finden Sie im Repository, welches Sie im

Folgenden für alle Aufgaben verwenden. Die Dokumentation dient als Hilfestellung für

Sie in den Kolloquien, um die Schritte Ihrer Lösung erklären zu können.

5.1. Wissen
5.1.1. Toolchain
Jedes in Hochsprache geschriebenes Programm muss in Maschinencode übersetzt wer-

den. Die Toolchain ist eine Aneinanderreihung von Routinen zur Erstellung eines aus-

führbaren Programms aus dem Code einer Hochsprache wie zum Beispiel der Sprache C.

Damit der Code unserer Hochsprache auf unserem Zielsystem ausgeführt werden kann,

muss er zuerst in die dem Zielsystem entsprechende Maschinensprache übersetzt wer-

den. Der Compiler unserer Toolchain übersetzt den von uns geschriebenen Code aus der

Hochsprache in Assembler-Code. Dieser Code hängt bereits von dem verwendeten Ziel

ab. Je nach Befehlssatz des Zielarchitektur (ARM, AVR, x86, ...) sieht der Assemblercode

verschieden aus. Der vom Compiler erstellte Assembly-Code wird vom Assembler in Ma-

schinencode umgewandelt. Als Basis für das weitere Verständnis zur Toolchain kann das

Dokument How a Compiler Works [RS14, Kapitel 2, S. 2] genutzt werden. In dem Diagramm

5.1 (siehe auch in Ihrer Dokumentation) können zum Verständnis die Arbeitsschritte der

Toolchain eingetragen werden. Nutzen Sie dafür das zur Verfügung gestellte .odt Doku-

ment.

5.1.2. Makefile
Das Programm Make wird verwendet, um den Buildprozess zu automatisieren. Dafür

liest Make die Makefile aus und gibt die entsprechenden Anweisungen an die Toolchain

weiter (z.b. Compiler, Linker, ...). Dies ist besonders bei größeren Projekten hilfreich, da

der Buildprozess aus vielen Einzelanweisungen bestehen kann. Außerdem können un-

terschiedliche Build-Konfigurationen und Targets benutzt werden. Eine Erklärung von

Makefiles bietet die Website [mak]. Schauen Sie sich den Inhalt an und verinnerlichen Sie

den Sinn und die Arbeitsweise von Makefiles.

12

Abbildung 5.1.: Toolchain Diagramm zum Ausfüllen und zur Vorbereitung auf das Prekolloquium

#Makefile für Praktikum
#Prekolloquium Aufgabe 1

CFLAGS := -00
CC := arm-none-eabi-gcc
TARGET := prog
SRC := prog.c
OBJECT := prog.o
RM := rm rf

$(TARGET) : $(OBJECT) $(SRC)
$(CC) $(CFLAGS)

clean:
$(RM) $(OBJ) $(TARGET)

Dependencies

Body / Build Commands

Targets

Variablen

Kommentare

Abbildung 5.2.: Beispiel zum Aufbau einer Makefile

5.2. Pre-Kolloquium 13

5.1.3. Printf-Debugging
Funktionsdefinition

Eine intuitive und einfache Methode des Debuggens ist die Ausgabe von Werten oder

Nachrichten über eine serielle Schnittstelle. Zum Lesen solcher Nachrichten auf der Ent-

wicklungsplattform ist es meist nötig, einen Seriell-zu-USB Adapter einzusetzen. Diese

sind günstig und weit verbreitet. Als Software dient ein serieller Monitor.

Anwendung

Möchte man die Implementierung einer Berechnung überprüfen, so kann dies über einen

Printf-Befehl getan werden, der das Ergebnis ausgibt. Auch eignet sich diese Debugging-

Methode gut als Indikator, ob bestimmte Stellen im Programmcode erreicht werden. Be-

sonders hilfreich ist diese Methode zum Überprüfen von Variablenwerten in Schleifen-

durchläufen. Auf die gleiche Art und Weise können falsche Übergabe- oder Rückgabepa-

rameter erkannt werden.

Grenzen

Der Rahmen in dem Printf-Debugging zum Erfolg führt, ist stark begrenzt. Es bietet kei-

nerlei Hilfe bei Problemen, die mit Speicherallozierung oder Interrupts zu tun haben.

Printf nutzt die langsame serielle Schnittelle und verändert das Zeitverhalten des Pro-

grammes stark. Das kann dazu führen, dass sich Fehler in einem auf Echtzeitfähigkeit

ausgelegten System anders verhalten, wenn eine Printf-Anweisung in den Code eingefügt

wurde. Es ist dadurch nicht möglich zeitkritische Anwendungen zu debuggen. Als Beispiel

dafür gilt die Kommunikation über Bussysteme. Dazu kommt der Aufwand und die Dau-

er des wiederkehrenden Build-Prozesses, da nach dem Verschieben der Printf-Anweisung

an eine andere Stelle im Programm, das Programm erneut kompiliert werden muss. Vor

allem bei großen Projekten bedeutet dies lange Wartezeiten und ist nicht praktikabel.

5.2. Pre-Kolloquium
Für das Kolloquium sollte klar sein, wie die Toolchain funktioniert und welche Werkzeu-

ge in den Programmbau involviert sind. Als Visualisierung sollen Sie das Diagramm zur

Toolchain ausfüllen. Machen Sie sich mit den einzelnen Schritten vertraut. Die Regeln,

nach denen das Programm gebaut wird, finden sich in dem Makefile. Sie sollten erklären

können welche Teile im Makefile welche Funktion erfüllen. In der folgenden Aufgabe

werden Sie unterschiedliche Fehler im Code aber auch im gegebenen Makefile finden

müssen. Die Fehler im Makefile sollten Sie durch genaue Analyse des Makefiles bereits

zum Teil finden können. Die Datei toolchain.odt enhält das Diagramm aus dem Skript,

14

welches den exemplarischen Ablauf einer Toolchain zeigt. Füllen Sie die Lücken der Da-

teien und Tools und erklären Sie was in welchem Schritt passiert. Machen Sie sich zudem

mit den Linux Befehlen find und grep vertraut.

5.3. Aufgabenstellung
5.3.1. Toolchain
Die erste Aufgabe formt den Einstieg in die Programmierung des Praktikumsboards. Es

wird sich mit der Ordnerstruktur und der Entwicklungsumgebung vertraut gemacht und

die Struktur des Gits verstanden. Es soll das erste Programm gebaut und geflasht sowie der

Umgang mit Makefiles geübt werden. Außerdem soll die Funktionsweise der Toolchain

verinnerlicht werden.

Erstellen Sie zunächst einen Fork des Repository von

1 https://git.ida.ing.tu-bs.de/IDA_Lehre/sdes_student

Dazu clonen Sie zunächst Ihren Fork mit dem angezeigten Link aus dem Webinterface in

Ihren lokalen Ordner.

Zusätzlich sollten Sie einen neuen Branch in folgender Form anlegen:

1 git checkout -b praktikum

Es kommt vor, dass der Betreuer im Praktikumsverlauf Änderungen am Master vorneh-

men muss, dies führt häufig zu Konflikten. Durch den Branch werden diese vermieden.

Sie arbeiten in ihrem Fork auf dem angelegten Branch.

In dem bereitgestellten git Repository finden sich alle für die Aufgabe benötigten Datei-

en. In dem Ordner src/APP befinden sich der Quellcode der Aufgaben des Praktikums.

Der Ordner src/APP/Aufgabe1/ps7/core0/ enthält den Quellcode der Aufgabe 1 für

den die Architektur ps7 und den Kern 0. In ihm finden sich weitere Unterordner. In

Aufgabe1/ps7/core0/src findet man alle .c-Dateien außer der main.c.

Nach dem Klonen des Gits ist die Entwicklungsumgebung einzurichten:

Terminal in Verzeichnis der Wahl (außer innerhalb des Repository) öffnen

Eine Integrated Development Environment (IDE) bzw. Texteditor Ihrer Wahl starten

(z.B. VSCode)

Neuen Workspaceordner erstellen und Ordner auswählen

sdes_student als Projektnamen wählen

5.3. Aufgabenstellung 15

Falls gewünscht, kann das Makefile-Projekt eingerichtet werden, um den Buildpro-

zess aus der IDE heraus zu starten

Ihre Aufgabe ist es, das Programm zu kompilieren und in die Laufzeitumgebung zu

laden. Dabei auftretende Fehler sind zu beheben und der Arbeitsvorgang zu dokumentie-
ren. Zunächst ist es sinnvoll sich den Programmcode der Datei main.c anzusehen und zu

verstehen. Um das Programm zu kompilieren gehen sie in den Repositoryordner, öffnen

ein Terminal und führen den Befehl make aus. Es ist nötig dem Programm make mitzu-

teilen, für welche Aufgabe und Architektur das Programm kompiliert werden soll. Die

Syntax des Aufrufs ist folgende:

1 make ARCH=ps7 APP=Aufgabe1 CORE=0

Falls Fehler auftreten, analysieren Sie diese und versuchen Sie ihre Gründe heraus-

zufinden. Es lohnt sich die Ausgabe genauer anzusehen und mit dem Wissen über die

Toolchain und Makefile zu verknüpfen. So kann der Ursprung des Fehlers schnell einge-

grenzt werden. Nutzen sie die Ausgabe des Kompiliervorgangs und lösen Sie die auftre-

tenden Fehler, um den Build-Prozess zu ermöglichen.

Tipp: Alle von der Toolchain benötigten Abhängigkeiten finden sich in dem Ordner

Aufgabe1/ps7/core0/build. Suchen Sie auch in dem Makefile nach Fehlern und achten

Sie auf Groß- und Kleinschreibung!

Der Ordner Aufgabe1/ps7/core0/cfg enthält die Header-Dateien und der Ordner

linker das Linkerscript.

Wichtig ist außerdem der Aufgabe1/ps7/core0/buildOrdner. In den Dateien config.mk,

includes.mk und sources.mk festgelegt, welche Pfade beim Build-Prozess überhaupt

berücksichtigt und welche Compilerflags gesetzt werden. Neue Dateien in bisher nicht

inkludierten Pfaden müssen in den entsprechenden Dateien eingetragen werden. In dem

Ordner out finden sich geordnet nach den Aufgaben, Architektur und Core die entspre-

chenden Zielpfade für die aus dem Build-Prozess entstehenden Objekt-Dateien.

Immer wenn eine neue Terminal-Session gestartet wird müssen zunächst einige Um-

gebungsvariablen gesetzt werden, damit die benötigten Tools gefunden werden. Dazu

dienen hier die “setup-lm” Befehle, die die PATH-Variable um die gewünschten Tool-

Verzeichnisse erweitern und bei Bedarf Lizenzserver zu setzen.

1 setup−lm lauterbach r_2020_09

2 setup−lm gcc gcc−arm−none−eabi−7−2018−q2

Der Ordner Debug/ps7 im Oberverzeichnis enthält das Skript "start_amp_session.sh",

welches die Debug-Umgebung lädt. Zur Anwendung des Skripts wird ein Terminal in dem

Ordner ps7 geöffnet und der Befehl

16

1 ./ start_amp_session.sh lauterbach[Lauterbachnummer]

ausgeführt. Die [Lauterbachnummer] muss angepasst werden und entspricht der Grup-

pennummer.

Achtung: Es kommt vor, dass die vorherige Lauterbach-Session auf dem Debugger nicht

ordnungsgemäß beendet wurde oder der Lauterbach von einem anderen Nutzer belegt

war. Dann wirft der Befehl zunächst den Fehler: Selected device already in use by... Dann bit-

te einmal prüfen ob wirklich der richtige Lauterbach angesprochen ist und nicht der einer

anderen Gruppe. Ein erneutes Ausführen dauert länger, sollte dann aber erfolgreich sein.

Nach dem erfolgreichen Kompilieren muss das Programm auf das Board geflasht wer-

den. Dafür starten wir die Lauterbach Software ”Trace 32” wie oben beschrieben. Für jede

Aufgabe gibt es im Ordner Debug/ps7/ einen entsprechenden Unterordner, welcher ein

Lauterbach-Skript enthält. Diese kann über die Befehlszeile in Trace32 ausgeführt wer-

den:

1 do Aufgabe1/zc706_onchip_trace.cmm

Generell arbeitet Trace32 vollständig skript-basiert und jedes GUI Kommando kann auch

in einem Skript eingesetzt werden. Dies können Sie sich für spätere Aufgaben merken um

wiederkehrende Befehle zu automatisieren.

Das zu Aufgabe 1 gehörige Skript sorgt dafür, dass das Board durch die Software geflasht

wird, sich aber keine weiteren Fenster in der Software öffnen. Ziel dieser Aufgabe ist das

Debuggen über printf. Nachdem Sie das den Befehl zum Flashen im richtigen Verzeichnis

ausgeführt haben, sollte sich ein Fenster ähnlich der Abbildung 5.3 öffnen. Das Programm

wird nun durch einen Klick auf “Go” gestartet. Sie können dieses Fenster nun ignorieren

und in einer freien Konsole die Verbindung zur Ausgabe des Boards aufbauen:

1 telnet ida−ser2net 800X

Der Port hängt von Ihrer Gruppennummer und dem verwendeten Lauterbach ab. Erset-

zen Sie das ’X’ durch die Nummer ihres Lauterbach-Debuggers. Das Board sollte Ihnen

jetzt jede Sekunde ein “I’LL BE BACK” ausgeben.

Bei Überprüfung der Arbeitsergebnisse sollten Sie auftretende Fehler dem Linker oder

dem Compiler zuordnen können.

5.3. Aufgabenstellung 17

Abbildung 5.3.: Lauterbachumgebung zum Flashen des Boards in Aufgabe 1

6. Aufgabe 2

6.1. Wissen
6.1.1. Tasks
Ein Task ist für gewöhnlich eine Endlosschleife einer Funktion, die von dem Scheduler

der CPU zugeteilt wird. Es können mehrere Tasks gleichzeitig laufen, die dann entspre-

chend ihrer Priorität CPU-Zeit zugeteilt bekommen. In µC/OS-II wird ein Task mit der

Methode

1 INT8U OSTaskCreate (void (∗task)(void ∗pd), void ∗pdata, OS_STK ∗ptos, INT8U prio)

erstellt. Der Task benötigt eine Priorität, die gleichzeitig auch seine Identifikation dar-

stellt. Kleinere Zahlen bedeuten eine höhere Priorität. Mit dem Funktionsaufruf von

1 UCOSStartup (CPU_FNCT_PTR initial_func)

wird unter anderem der Scheduler und somit das Multitasking gestartet. Ein Task be-

nötigt seinen eigenen Stack mit der entsprechenden Stack-Größe. Dieser sollte statisch

alloziert werden.

Empfohlene Literatur:

µC/OS-II Micrium Documentation[mic, µC/OS-II Quick Reference]

Micrium: Inter Process Communication via Message Queues [wik, Message Queues Quick

Start Guide, S. 9]

Technical Reference Manual : Zynq-7000 ZC-706 im Repository Ordner

6.2. Aufgabenstellung
6.2.1. Teil 1
Das in der ersten Aufgabe programmierte Programm soll nun als Task ausgeführt wer-

den. Zusätzlich sollen in einem weiteren Task Fibonaccizahlen berechnet und ausgegeben

werden.

Das Programm weist zahlreiche Fehler auf, die es zu debuggen gilt

6.2. Aufgabenstellung 19

Abbildung 6.1.: Menü zum Inspizieren von Betriebssystemfunktionen

Abbildung 6.2.: Fenster zum Inspizieren der Stackausnutzung

Eine sinnvolle Hilfe stellt die UCOS-2 Dokumentation zu dem Thema Task Mana-

gement dar (siehe oben: ”Empfohlene Literatur”)

Tipp: Die UART Schnittstelle ist fehlerhaft konfiguriert, die gewünschte Frequnz

sollte auf 50000000 eingestellt sein, die erste der beiden UART Instanzen ausgewählt

sein. (siehe TRM Zynq 7000)

Dokumentieren Sie die gefundenen Fehler.

Die Lauterbach Umgebung bietet mehrere Möglichkeiten das Multitasking in UCOS

zu überwachen (siehe Abbildung 6.1):

Überwachung der Tasks und ihrer Prioritäten (Beispiel siehe Abbildung 6.2)

Überwachung von Stackgrößen, auch die der Tasks (Beispiel siehe Abbildung 6.3

Diese Überwachung basiert auf der Überprüfung auf Nullen im Stack.

20

Abbildung 6.3.: Fenster zum Inspizieren von laufenden Tasks, ihren Prioritäten und IDs

6.2.2. Teil 2
Es sollen zwei Tasks erstellt werden, die über eine Message Queue miteinander verbunden

sind.

Erstellen Sie zwei Tasks

Task 2 soll auf eine Nachricht von Task 1 mit einer Ausgabe über printf reagieren

Nutzen Sie eine Message Queue um Task 2 zu informieren

Es gilt zu dokumentieren, was zu einem Task gehört, wie ein Task erstellt wird und wie

entschieden werden kann, welcher Task von dem Betriebssystem als nächstes ausgeführt

wird.

6.3. Post-Kolloquium
Welche Bedeutung hat UCOSStartup() ?

(Tipp: Suchen Sie in Eclipse nach der Funktion (Strg+H) und machen Sie sich mit

dem Inhalt vertraut. Ist der Aufruf dieser Funktion für die korrekte Funktion des

Programms notwendig?)

Wie ist der Task Control Block aufgebaut? (Siehe Abbildung 6.1)

Was ist eine Message Queue und warum wird sie genutzt?

Welche Vorteile hat eine Message Queue?

Über welche Parameter wird die UART Schnittstelle konfiguriert?

In Aufgabe 1 haben Sie sich eingehend mit der Toolchain beschäftigt. Schauen sie

sich nun einmal die Dateien out/Aufgabe2_ps7_core0.lstund out/Aufgabe2_ps7_core0.map

an. Was steht in diesen Dateien und welche Informationen könnten Sie hier heraus

ziehen?

6.3. Post-Kolloquium 21

1 typedef struct os_tcb {

2

3 OS_STK ∗OSTCBStkPtr;

4

5 void ∗OSTCBExtPtr;

6

7 OS_STK ∗OSTCBStkBottom;

8 INT32U OSTCBStkSize;

9

10 INT16U OSTCBOpt;

11

12 INT16U OSTCBId;

13

14 struct os_tcb ∗OSTCBNext;

15 struct os_tcb ∗OSTCBPrev;

16

17 OS_FLAGS OSTCBFlagsRdy;

18

19 INT8U OSTCBStat;

20 INT8U OSTCBPrio;

21

22 } OS_TCB;

Quellcode 6.1: Ausschnitt aus dem Task Control Blocks in µC/OS-II

7. Aufgabe 3

7.1. Wissen
7.1.1. JTAG-Debugging
Funktionsdefinition

Der Joint Test Action Group (JTAG)-Debugger ermöglicht es, Eingriffe in den Program-

mablauf vorzunehmen. Außerdem unterstützt er den Entwickler dabei, den Programm-

zustand zu inspizieren. Dazu lässt sich der Speicher auslesen und die daraus gewonnenen

Informationen werden ausgewertet und zu Analysezwecken aufbereitet. Plattformen, die

Multitasking unterstützen, bieten Übersichten zu laufenden Tasks. Damit wird das Über-

wachen der Nebenläufigkeit vereinfacht. Fortgeschrittene Debuggerprogramme bieten

die Möglichkeit die Interprozesskommunikation, zum Beispiel Semaphoren und Nach-

richten, auszuwerten. Der Standard in dem Bereich des Debuggings für eingebettete Sys-

teme ist der GNU-Debugger (GDB), welcher Teil der GNU Compiler Collection (GCC)

ist. Das JTAG-Interface hat den Zweck ein Verfahren zu ermöglichen, mit dem Schal-

tungen getestet werden können, während sie sich verlötet auf der Leiterplatte befinden

[jta]. JTAG-kompatible Systeme haben im Normalbetrieb abgetrennte Komponenten, die

erst dann aktiviert werden, wenn das JTAG-Interface genutzt werden soll. Technisch ge-

sehen ist die Schnittstelle als Schieberegister verwirklicht. Das Zielsystem ist über das

JTAG-Interface mit der Debugginghardware verbunden. Die Kommunikation zwischen

der Entwicklungsplattform auf dem PC und der Debuggingplattform findet über USB

statt (Abbildung 7.1).

Quelltextansicht

Im Gegensatz zu Assembler-Debugging kann der Code via High Level Language (HLL)-

Debugging in der Quelltextansicht inspiziert werden (siehe Abbildung 7.2). Der Program-

mablaufzähler wird eingeblendet und es lässt sich nachvollziehen, an welcher Stelle im

Quelltext sich das Programm gerade befindet. Diese Möglichkeiten bieten sich, weil der

Compiler beim Erzeugen der Executable and Linking Format (elf)-Datei Debuginforma-

tionen hinzufügt. Diese werden von dem Debugwerkzeug interpretiert und die Assembler-

Instruktionen werden den Zeilen im Quelltext zugeordnet.

7.1. Wissen 23

Debug Umgebung

PC

Debugger Modul

Debug-Hardware

JTAG Kompatibilität

Zielsystem

JTAG-Interface

USB

Abbildung 7.1.: Cross Debugging via Joint Test Action Group (JTAG)-Debugging

Abbildung 7.2.: Quelltextansicht in der Lauterbach Umgebung

24

(Single-)Stepping

Das Programm kann in Einzelschritten ausgeführt werden. Dabei können entweder die

Schritte der Hochsprache oder der Assembler-Ebene einzeln ausgeführt werden. Außer-

dem ist es möglich, die aktuelle Methode zu Ende laufen zu lassen oder in die auszu-

führende Unterroutine hineinzuspringen, beziehungsweise erst bei deren Rückkehr zu

stoppen. Diese Möglichkeiten ergeben sich, wie auch die Quelltextansicht, aus den vom

Compiler der elf-Datei hinzugefügten Debuginformationen.

Starten und Stoppen des Programmablaufs

Das Programm kann angehalten werden. Dies kann hilfreich sein, wenn man an bestimm-

ten Stellen im Programm Variablen auslesen möchte. Das manuelle Stoppen des Pro-

grammflusses ist allerdings sehr ungenau. Daher sollten für das gezielte Anhalten des

Programms Breakpoints genutzt werden.

Haltepunkt (Breakpoint)

Das Setzen eines Breakpoints beschreibt die Auswahl einer Stelle im Programmfluss, an

der die Ausführung des Programms gestoppt wird, bevor der markierte Befehl ausgeführt

wird. Aus [Gra, S. 115], Vorgehen beim Debuggen mit Breakpoints:

Aufstellen einer These über die mögliche Position des Defekts

Setzen eines Haltepunkts vor der vermuteten Position

Annäherung mit Hilfe von Breakpoints / Stepping, dabei: Überprüfung des Pro-

grammzustands

These falsch / Korrigieren des Defekts

Es wird zwischen Software und Hardware Breakpoints unterschieden [arm]. Erstere wer-

den temporär in den RAM des Zielsystems geschrieben und ersetzen bis zum Eintritt des

Breakpoints die ursprüngliche Instruktion. Diese wird durch eine Breakpoint-Instruktion

überschrieben und die CPU geht bei der Ausführung in einen Debugstatus. Hardware

Breakpoints werden durch das Überprüfen des Instruction Fetch von einer spezifischen

Speicheradresse aus umgesetzt (siehe Abbildung 7.5). Im Gegensatz zu Software Break-

points können Hardware Breakpoints auch auf Befehle aus dem ROM angewendet wer-

den. Sollte eine Memory Management Unit (MMU) Adressbereiche neu zuordnen, so kann

es zum Überschreiben von Software Breakpoints kommen.

Das Setzen eines Breakpoints erfolgt über einen Doppelklick neben die Programmzeile

(siehe Abbildung 7.3).

7.1. Wissen 25

Abbildung 7.3.: Setzen eines Breakpoints in Zeile 28.

Abbildung 7.4.: Breakpoint-Übersichtsfenster in der Lauterbach Umgebung

Überwachungspunkt (Watchpoint)

Ein Watchpoint überwacht eine gewünschte Variable und hält die Ausführung des Pro-

gramms an, wenn diese verändert werden. Die Möglichkeiten der Überwachung hängen

von dem genutzten Debugprogramm ab. Möglich ist zum Beispiel die Überprüfung auf

einen Wertebereich oder auf Lese/Schreibzugriffe auf eine Variable. Nicht überwachen las-

sen sich alle Datenströme, die an der CPU vorbei laufen. Sollten Speicherbereiche zum

Beispiel durch Direct Memory Access (DMA) verändert werden, so kann dies nicht mit

Watchpoints an der CPU detektiert werden. Die gesetzten Break- und Watchpoints er-

scheinen im Übersichtsfenster, wo auch ihr Typ näher spezifiert ist.

CPU RAM / ROM

Breakpoint Unit

Compare instruction
address with
breakpoint address

Abbildung 7.5.: Hardware Breakpoint Realisierung

26

Abbildung 7.6.: Watch-Fenster Breakpoint Realisierung

Speicherzugriff

Der Speicherzugriff ermöglicht das Auslesen des Speichers. Die Daten können in ver-

schiedenen Formatierungen angezeigt werden. Es ist möglich den Inhalt direkt als ASCII

String, hexadezimal, dezimal und binär darzustellen.

Watch Fenster

Mit Hilfe der Debuginformationen aus der elf-Datei können die, aus dem Speicher gele-

senen, Daten im Watch Fenster geordnet und entsprechend der zugehörigen Datenstruk-

turen dargestellt werden (siehe Abbildung 7.6). Es ist möglich, sich die Daten in Arrayform

oder in anderen Formatierungen anzeigen zu lassen. Konstanten werden von dem Debug-

ger nicht aufgelöst.

Auswertung des Call Stacks

Die im Call Stack enthaltenen Daten lassen sich auswerten und eine Aufrufliste daraus

rekonstruieren (siehe Abbildung 7.7). Außerdem werden beim Verlassen einer Unterrou-

tine die lokalen Variablen auf den Call Stack gelegt und lassen sich von vielen Debuggern

auswerten.

7.1. Wissen 27

Abbildung 7.7.: Watch-Fenster Breakpoint Realisierung

7.1.2. Beispiel: Schreiboperation auf Variablen überprüfen
Wenn es zu nicht nachvollziehbaren Änderungen von Variablen kommt ist, ist es sinnvoll

diese mit Watchpoints zu überwachen. Es ist möglich, dass die Variable durch einen feh-

lerhaften Schreibvorgang einer anderen Variable beeinflusst wird. Ein Beispiel, wie es zu

solch einer Situation kommen kann, ist in dem Quellcode 7.1 zu betrachten. Die Tabelle

7.1 zeigt, dass der in der globalen Variable a gespeicherte Wert durch die Schreiboperation

auf numbers[4] überschrieben wurde. Das Ergebnis der Addition in Zeile 25 des Quellcodes

7.1 ist somit falsch.

28

1 /∗
2 ∗∗ zur Veranschaulichung:

3 ∗∗ alle Variablen global und im gleichen Speichersegment

4 ∗/

5

6 uint8_t numbers[4];

7 uint8_t a = 10;

8 uint8_t b = 15;

9 uint8_t result ;

10

11 void main (void) {

12

13 /∗
14 ∗∗ for−Schleife mit Fehler in Abbruchbedingung

15 ∗∗ Schreiboperation auf numbers[4]

16 ∗∗ −> fehlerhafte Daten in Speicherbereich der Variable a

17 ∗/

18 for (uint8_t i = 0; i <= 4; i++) {

19 numbers[i] = i ;

20 }

21

22

23 /∗ falsches Ergebnis durch fehlerhafte Daten in Variable a ∗/

24 result = a + b;

25

26 }

Quellcode 7.1: Beispielcode zum Überschreiben von Speicherbereichen und dadurch entstehende

Folgefehler

6543210

Speicherbereich für globale Variablen

2515103210

Byteweise
adressiert

Inhalt - soll

Zugeordnete
Variable numbers[4] a b result

191543210Inhalt - ist

Tabelle 7.1.: Visualisierung des Speicherinhalts bei Ausführung des Programms 7.1

7.2. Pre-Kolloquium 29

7.1.3. Grenzen des JTAG-Debuggings
JTAG-Debugging eignet sich nur dann, wenn das System zur Erfassung des Fehlers auch

pausiert werden kann. Sobald eine Analyse des Systems ausgeführt wird, wird das Zeitver-

halten stark verändert, weil das System angehalten werden muss. Fehler, die auf Zeitver-

halten beruhen, lassen sich damit nur schwer untersuchen. Dazu gehören auch Interrupts

oder Unterbrechungen durch höherpriore Tasks. Es ist außerdem nicht möglich, im Pro-

grammablauf zurück zu gehen und sich den Hergang des Fehlers genau anzusehen. Dafür

bedarf es der Aufzeichnung des Programmflusses.

7.1.4. Schrittmotoren
Schrittmotoren können schrittweise und somit sehr genau gesteuert werden. In unserem

Anwendungsfall ist die schrittweise Ansteuerung allerdings nicht wichtig. Es ist inter-

essant, in welcher Frequenz die Schritte ausgelöst werden, denn damit wird die Geschwin-

digkeit des Motors geregelt. Um die Schrittmotoren einfacher ansteuern zu können, wer-

den Schrittmotortreiber genutzt. Das Datenblatt zu dem Treiber A4988 findet sich dabei

in der Quelle [All]. Für jeden Schritt, den der Motor machen soll, muss ein Puls an den

Eingang des Schrittmotortreibers gesendet werden. Schauen Sie sich im Datenblatt zu

dem Zynq-7000 [Xil18] das Kapitel zu dem Thema Triple Timer Counter an. Hier finden sich

Informationen, wie man diese Pulse erstellen könnte, ohne dass man sich in der Software

um das Zählen direkt kümmern müsste. Die Drehrichtung wird von einem Signal über

GPIOs gesetzt.

7.2. Pre-Kolloquium
Versuche Sie herauszufinden, wie man die Motoren mit Hilfe der Timer mit verschie-

denen Geschwindigkeiten ansteuert. Halten Sie Ihre Ergebnisse zunächst schriftlich fest.

Anregungen:

Welche Vorteile bieten Timer gegenüber dem Zählen in Software?

Ist es möglich Signale auf GPIOs zu geben, wie kann davon Nutzen gemacht werden?

Können diese Signale auch von Timern erzeugt werden?

Schauen Sie sich die verschiedenen Zählmodi (Interval Mode, Overflow Mode) an: Wann

startet der Timer wieder bei 0?

Finden Sie die Bedeutung von Match Value und Interval Length heraus

Wie lang muss der Puls sein? Schauen Sie sich das Datenblatt des Motortreibers an.

Wie können Sie in der Lauterbach Skriptsprache Breakpoints generieren, laden und

speichern?

30

Wie hoch ist die Clockfrequenz des Timers? Was wäre ein passender Prescaler um

c.a. 1µs pro Timer-Tick zu generieren?

Was macht die Funktion XTtcPs_CalcIntervalFromFreq? Ist es sinnvoll diese Funk-

tion hier anzuwenden?

7.3. Aufgabe
Schreiben Sie die Software für das Ansteuern der Motortreiber. Es soll auf einen PID Wert

zwischen -1000 und 1000 reagiert werden und die Motorleistung, sowie Drehrichtung ent-

sprechend geregelt werden. Die Motoren drehen bis zu einer Pulsfrequenz von c.a. 10kHz

flüssig. Als Mindestfrequenz sollten c.a. 1kHz gesetzt werden.

Configs:

Ein Timer Tick entspricht c.a Mikrosekunde

Nutzen Sie die Timer TTC0_0 und TTC0_1

Die GPIO-Pinnummern für die Richtungseinstellung sind 54 und 55

Simulieren Sie einen PID-Regler indem:

Sie einen globale Variable pidValue in main.c anlegen

Sie In der Methode InitDoneCallback eine Schleife erstellen, die die globale Va-

riable in ihrem Wertebereich hoch zählt.

Tipp: Denken Sie daran, dass Sie die Variable nicht unendlich schnell hoch

zählen.

Initialisieren Sie einen Timer in der ttc_timer.c:

Erstellen Sie dafür eine init-Methode

Timer Instanz erstellen (global)

1 XTtcPs (...)

Erstellen Sie eine Konfigurationsinstanz für den Timer

1 XTtcPs_Config (...)

Die Konfigurationsinstanz des Timers füllen dazu die folgende Methode nut-

zen

1 XTtcPs_LookupConfig(XPAR_PS7_TTC_0_DEVICE_ID);

7.3. Aufgabe 31

Den Timer initialisieren

1 XTtcPs_CfgInitialize (...)

Modus des Timers setzen (Tipp: Welcher Timermodus soll gewählt werden?

Wann soll ein HIGH/LOW am Ausgang erzeugt werden? Welche Option wird

benötigt, um den Match Value zu nutzen?)

1 XTtcPs_SetOptions (...) ;

Prescaler setzen

1 XTtcPs_SetPrescaler (...)

Match Value erstellen und setzen

1 XTtcPs_SetMatchValue(...)

Intervalllänge erstellen und setzen

1 XTtcPs_SetInterval (...)

Schreiben Sie Methoden zum Starten und Stoppen der soeben erstellten Timer

(Hinweise finden sich in der Datei xttcps.h)

GPIO Initialisierung für das Festlegen der Drehrichtung des Motors

Erstellen Sie eine Konfigurationsinstanz für GPIOs

1 XGpioPs_Config (...)

Erstellen Sie eine GPIO Instanz

1 XGpioPs (...)

Implementieren Sie die Funktion

1 timer_gpio_Init ()

Füllen Sie die Konfigurationsinstanz (ähnlich wie bei der Erstellung des Ti-

mers)

Initialisieren Sie die GPIO-Instanz (Tipp: XPAR_PS7_GPIO_0_DEVICE_ID)

32

Definieren Sie die Richtung der Pins mit

1 XGpioPs_SetDirectionPin(gpioInstanz, Pinnummer, 1);

2 XGpioPs_SetOutputEnablePin(gpioInstanz, Pinnummer, 1);

Erstellen Sie eine Funktion motor_Set_Moving_Direction, die die Drehrichtung der

Schrittmotoren in Abhängigkeit des PID Values bestimmt. Nutzen Sie dabei die Me-

thode

1 XGpioPs_WritePin()

Erstellen Sie eine Funktion timer_Set_Interval_Length, die die Interval-Länge sowie

das Match-Value eines Timers setzt.

Schreiben sie eine Task-Funktion timer_Task, die die Drehrichtung der Schrittmo-

toren sowie deren Geschwindigkeit in Abhängigkeit des pidValue setzt. Diese soll

die Timer stoppen, die GPIOs korrekt setzen, die Intervall-Längen aus dem pid-

Value berechnen und dann die Timer wieder starten. Erstellen Sie in ihrer main.c

einen Task, der zunächst die timer_Init() Funktion aufruft und dann alle 2ms die

timer_Task() Funktion.

Da ihre Methode in Abhängigkeit zum PID Wert steht, und dieser in der main.c
simuliert wird, bietet es sich an die globale Variable pidValue mit extern in ihre

Datei einzubinden.

Überlegen Sie sich welche Konsequenzen nebenläufiger Schreib- oder Lesezu-

griff auf eine Variable haben kann und wie Sie diese Effekte verhindern kön-

nen.

Tipp: Nutzen Sie Critical Sections beim Zugriff auf die globale pidValue Varia-

ble.

7.4. Post-Kolloquium
Zeichnen Sie mit der Funktion ”iprobe.timing” die Pulse auf die Sie mit dem Timer

generieren.

Wie können in Trace32 Breakpoints erstellt werden? Wie kann eine Bedingung an-

gegeben werden?

8. Aufgabe 4

Nachdem in der vorherigen Aufgabe das Thema JTAG bereits angerissen wurde, soll es

auch in Aufgabe 4 behandelt werden. Es wird eine weitere Komponente des Anwendungs-

falls debuggt. Zusätzlich zum JTAG-Debugging wollen wir Ihnen einige Funktionen des

Lauterbach-Debuggers näher bringen.

Damit der Roboter jederzeit seinen Winkel zur Horizontalen kennt, benötigt er eine

echtzeitfähige Lagemessung. Der Treiber für die Ansteuerung der inertialen Messeinheit

über I
2
C wird mit Hilfe des JTAG-Debuggings und der Nutzung des Lauterbach Logik

Analysators in einen fehlerfreien Zustand gebracht. Die Werte des Sensors werden den

anderen Programmmodulen über globale Variablen zur Verfügung gestellt.

Die Aufgabe ist es, ein Programm zu schreiben, dass die aktuellen Werte des Gyroskops

und des Beschleunigungssensors ausliest und in zwei globalen Variablen speichert. Maß-

geblich für die Funktion des Moduls ist die korrekte Initialisierung des I
2
C Busses, die

richtige Konfiguration der inertialen Messeinheit und das korrekte Umwandeln der Da-

ten. Bei dieser Aufgabe wird neben dem JTAG-Debugging unterstützend ein Logik Ana-

lysator genutzt. Die Studierenden sollen mit Hilfe des Lauterbach Logic Analysers die

übertragenen Daten auf dem I
2
C Bus einsehen und die gesendeten Informationen ex-

trahieren. Zur Kontrolle kann die von Lauterbach zur Verfügung gestellte automatische

Protokollanalyse des Logik Analysators genutzt werden.

8.1. Wissen
8.1.1. Inertiale Messeinheit und Sensorfusion
Die MPU9250 von InvenSense bietet eine 9-Achsen Messeinheit mit Accelerometer, Gy-

roskop und Magnetometer. Die MPU9250 wird auch als Bewegungs- und Lagesensor in

Smartphones genutzt. Die aus der Sensoreinheit ausgelesenen Werte müssen für die wei-

tere Verwendung bearbeitet werden. Dabei ist es sinnvoll sich auf die Kippachse nach

vorne und hinten zu konzentrieren. Um die Lage richtig einschätzen zu können, benötigt

man zwei Messwerte von dem Sensor. Die Beschleunigung sowie die Winkelgeschwindig-

keit. Um einen möglichst fehlerfreien Wert zu bekommen, müssen die Messwerte gefiltert

werden. Die Probleme, die sich dabei auftun, sind folgende: Der Beschleunigungssensor

ist sehr anfällig für Rauschen, also für kurzfristige Fehler. Dafür kann er die Winkel-

messung nicht relativ, sondern absolut ausführen. Die Winkelgeschwindigkeit wird sehr

genau gemessen und kaum von äußeren Einflüssen gestört. Der aus dem Gyroskop resul-

tierende Winkel unterliegt durch die Integration der Messwerte einem gewissen Drift. Es

34

ist nötig diese Sensordaten zu filtern und zu kombinieren, um die Schwächen der beiden

einzelnen Methoden damit auszugleichen.

Neben der in Aufgabe 3 erlernten Arbeitsweise mit JTAG-Debugging, ist Grundlagen-

wissen über die Funktionsweise von I
2
C nötig. Dazu können Sie sich [i2c] ansehen. Es

sollte bekannt sein, wie ein I
2
C Gerät angesprochen wird, welche Pins dafür nötig sind

und wie Register im Zielgerät gelesen oder geschrieben werden. Für die Analyse mit dem

Lauterbach Logic Analyser finden sich in [Lau14, S. 48-49] Informationen zur automati-

schen Protokollanalyse von I
2
C. Weitere Informationen sind im Datenblatt [Inva] und der

Register Map [Invb] der inertialen Messeinheit zu finden. Sie sollten über Wissen zu iner-

tialen Messeinheiten verfügen und sich darüber im Klaren sein, warum eine Sensorfusi-

on nötig ist und wie man sie realisiert. Informationen dazu können Sie aus der folgenden

Quelle beziehen [HiB].

8.1.2. Visualisierung von Daten
Der Lauterbach-Debugger und die Trace32-Software bietet eine Vielzahl verschiedener

Funktionen. Beim Arbeiten mit Sensoren, die mit hoher Frequenz mehrere Messwerte

produzieren, kann es sehr hilfreich sein die Daten zu visualisieren.

Eine IMU ist ein solcher Sensor. Bei mehreren Achsen und wenigen zehn Hertz Messfre-

quenz ist die Ausgabe mit printf nahezu unbrauchbar, da der Entwickler kaum mit dem

Lesen der Werte hinterher kommt. Ganz abgesehen von dem großen Einfluss von printf
auf das Zeitverhalten.

Es bietet sich daher an die Daten graphisch in einem Koordinatensystem darzustellen.

Der Lauterbach ermöglicht es auf Variablen zuzugreifen und diese zu visualisieren. Dazu

speichert man in die Messwerte in seinem Programm über eine gewisse Zeit in einem

Array ab. Anschließend hält man sein Programm durch den Debugger an.

Zum einen kann man nach dem Array in dem “Symbol.browse”-Fenster suchen, die

Variable zur Watch-List hinzufügen und sich die Werte textlich anzeigen lassen.

Zum anderen kann man das Array plotten, indem man in die Lauterbach-Befehlszeile

folgendes eingibt:

1 var .DRAW <NAME_OF_ARRAY>

Der Befehl ermöglicht es auch mehrere Arrays in ein Fenster zu plotten, um Zusam-

menhänge zwischen Daten besser zu verstehen:

1 var .DRAW <NAME_OF_ARRAY_1> <NAME_OF_ARRAY_2>

8.2. Pre-Kolloquium 35

8.2. Pre-Kolloquium
Wie liest man aus einem I

2
C Gerät?

Welche Register aus der IMU sind interessant für uns? Schauen Sie sich das Re-

gisterdatenblatt der IMU an und suchen Sie Register, die für unsere Anwendung

interessant sind

Wie werden rauschende Signale geglättet?

Was wollen wir aus der IMU lesen?

Müssen wir die IMU erst aufwecken?

Wie konfiguriert man Gyroskop und Accelerometer so, dass beim Gyroskop Dps =

500 ist, ACC Skala = 4g ?

Mit welcher Formel berechnet man den Winkel aus ACC und Gyroskop-Daten? Wo

ist der Unterschied zwischen beiden? Wo spielt die Sampling-Zeit mit hinein?

Werten Sie den gegebenen I
2
C Datenstrom (siehe 8.1) aus und geben Sie Adresse und

Inhalt der Nachricht wieder, handelt es sich um Lesen oder um Schreiben? (Tipp:

Abgebildet ist nur der Datenstrom ausgehend vom Master)

Warum benötigt man zur sicheren Winkelberechnung eine Sensorfusion aus den

Daten von ACC und Gyroskop? Warum reicht ein Sensor hier nicht aus? (Machen

Sie sich mit dem Komplementärfilter vertraut)

8.3. Aufgabe
In dieser Aufgabe sollen Sie folgenden Ablauf schrittweise implementieren:

I
2
C initialisieren

IMU initialisieren

IMU-Task starten

Periodisch IMU-Daten abfragen

Winkel aus Accelerometer- und Gyro-Daten berechnen

Berechneten Winkel an PID Filter propagieren

IMU-Task erstellen

Die imu.c soll zwei Methoden nach außen bereitstellten. Diese lauten:

36

1 int mpu9250_Imu_Init(void ∗pdata); // Initialize

2 int mpu9250_CalculateAngle(void ∗pdata); // Task function

Erstellen Sie in der main.c einen neuen 5-Millisekunden-Task und starten Sie ihn so,

wie in Aufgabe 2 gelernt. Dieser soll das IMU Modul zunächst initialisieren und dann

in der while(1) Schleife die Berechnung des Winkels periodisch aufrufen. Füllen Sie in

der weiteren Aufgabe diese beiden Methoden mit allem was zur Initialisierung und zur

Berechnung benötigt wird aus.

I2C initialisieren

Erstellen Sie in der imu.c eine Methode zur Initialisierung der I
2
C Instanz:

1 static uint8_t mpu9250_Iic_Init();

Zunächst die globale Variable für die I
2
C Instanz erstellen

1 static XIicPs Iic ;

Zur I
2
C Initialisierung: Config Struct erstellen

1 XIicPs_Config ∗Config;

Config-Struct mit XIicPs Config füllen, (Tipp: Informationen zu Übergabeparame-

tern finden sich in der imu.h)

1 Config = XIicPs_LookupConfig(...) ;

I
2
C initialisieren und Status abfragen, übergeben Sie der Methode die benötigten

Parameter (Tipp: Basisaddresse des I
2
C findet sich auch in dem Config-Struct)

1 XIicPs_CfgInitialize (...) ;

Zur Sicherheit einen Self-Test machen und das Ergebnis abfragen (in die Methode

gucken, um den Rückgabewert interpretieren zu können)

1 XIicPs_SelfTest (...) ;

I
2
C Clockrate setzen, suchen Sie in der imu.h nach Übergabeparametern. Achtung:

Die Clockrate soll 100kHz betragen.

1 XIicPs_SetSClk (...) ;

8.3. Aufgabe 37

Das Nutzen der I
2
C Schnittstelle erfolgt über zwei Methoden zum Senden und Empfan-

gen von Daten aus den Registern des MPU9250 Sensors. Erstellen und implementieren

Sie die beiden benötigten Methoden in der Datei imu.c.

1 static uint8_t mpu9250_Write_Reg(uint8_t iic_address, uint8_t data)

2 static int8_t mpu9250_Read_Data(uint8_t iic_address, uint8_t length, u8 RecvBuffer [])

Die benötigte Schnittstelle des I
2
C Treibers von Xilinx sind die Methoden

1 XIicPs_MasterSendPolled()

und

1 XIicPs_MasterRecvPolled()

Schauen Sie sich die Methoden an und identifizieren Sie die benötigten Übergabepara-

meter. Implementieren Sie auch hier eine Fehlerüberprüfung.

IMU initialisieren

Nach der erfolgreichen Initialisierung der I
2
C Schnittstelle ist es notwendig die inertiale

Messeinheit zu initialisieren. Nutzen Sie dafür die zuvor implementierten Send- und Recv

Methoden, um die Register der IMU wie gewünscht zu konfigurieren. Die benötigten

Register haben Sie im Präkolloquium ausgearbeitet. Zu überprüfen, ob die Initialisierung

erfolgreich war, ist nicht zwingend notwendig, hilft im Zweifel aber Fehler zu finden. Hier

kann der Status der IMU einmal abgefragt werden.

IMU-Daten abfragen

Nach dem Initialisieren der IMU sollen Sie nun eine Methode zum Auslesen der Daten

von Accelerometer und Gyroskop erstellen. Lesen Sie die Daten der IMU an einem Stück

aus und vermeiden Sie schnell aufeinander folgende Lesevorgänge. Es lassen sich alle

Register mit den benötigten Rohwerten mit einem Lesevorgang auslesen.

Falls beim Auslesen Fehler auftreten, ist es sinnvoll den Status des Sensors auszulesen.

Vergleichen Sie dazu den Inhalt des Statusregisters mit dem angegebenen Sollwert. Geh-

en Sie systematisch alle Fehlerquellen durch, die die Kommunikation mit dem Sensor

unterbinden könnten. Einen Fehler in der Hardware können Sie ausschließen.

Wenden Sie das Wissen aus 8.1.2 an, um die Daten von Accelerometer und Gyroskop mit

der Trace32-Software zu plotten. Schalten Sie den Lowpass Filter vom Accelerometer an

und aus und vergleichen Sie die Qualität der Messwerte.

Nutzen Sie den Lauterbach Logik Analysator (Untermenü ‘Probe‘->‘Timing‘) um die I
2
C

38

Übertragung zu inspizieren. Verifizieren Sie die Rohwerte durch den Übungsleiter.

Tipp: Überlegen Sie genau welche Sensorachsen Sie für die Winkelberechnung im wei-
teren Verlauf der Aufgabe benötigen und welche nicht. Vergleichen Sie hierzu die Grafik
zur Ausrichtung der Achsen im Datenblatt der IMU mit der Lage auf dem Roboter im
Versuchsaufbau.

Winkel berechnen

Außerdem müssen die Accelerometerdaten skaliert werden. Für die Winkelberechnung

ist es nötig, dass das Accelerometer die Erdbeschleunigung auf jeder der drei Achsen

gleich misst (von Werk aus nicht der Fall). Finden Sie zunächst die Maximal- und Mi-

nimalwerte für jede Achse bezüglich der Erdbeschleunigung heraus. Dies können Sie

tun, indem Sie den Roboter langsam um jede Achse drehen dabei jede Messung mit den

_imu_accMaxData und _imu_accMinData Arrays vergleichen und diese ggf. aktualisieren.

Notieren Sie sich diese Messwerte und nutzen Sie sie im Folgenden als Konstanten für die

Grenzen des ACC Wertebereiches. Mappen Sie anschließend die Daten der einzelnen Ach-

sen des Accelerometers auf diesen Wertebereich. Die Gyroskopdaten müssen mit einem

passenden Offset kalibiert werden. Beachten Sie außerdem den entsprechenden sensiti-

vity scale factor (Stichwort: GYRO_FS_SEL) beim Ermitteln der Daten des Gyroskop.

Im Folgenden sollen die gemessenen Werte in eine Winkelangabe transformiert wer-

den. Berechnen Sie zwei Winkel: Der erste soll auf Basis der Accelerometerdaten (Stich-

wort: atan2()) berechnet werden, der zweite auf Basis der Gyrodaten (Stichwort: Winkel-

geschwindigkeit -> Winkel). Überprüfen Sie die beiden Winkel auf ihre Plausibilität. Zu-

sätzlich benötigen Sie noch die Winkeländerung pro Zeitschritt.

Benutzen Sie die oben genannten Winkel und implementieren Sie einen Komplemen-

tärfilter, der die beiden Winkel zu einem fusioniert. Dieser sollte wie in etwa so aussehen:

1 currentAngle = 0.98∗(previousAngle + gyroAnglePerTimeStep) + 0.02∗accAngle;

In Aufgabe 7 wird Ihnen ein PID-Regler vorgegeben werden, damit die Motoren des

Roboters adäquat auf den aktuellen Winkel reagieren. Die Kommunikation mit dem PID-

Regler-Task läuft über eine globale Variable.

Tipps:

Achten Sie auf das Einfügen der Datei in dem richtigen Ordner.

Schauen Sie sich die IMU an und interpretieren Sie die Achsausrichtung, um her-

auszufinden welche Achsen für die Berechnung der Winkel aus Accelerometer- und

Gyroskopdaten nötig sind.

Was macht die Funktion atan2()? Zu welcher Library gehört sie? Es gibt eine Beson-

derheit die zur Verwendung der Library erfüllt sein muss, welche ist es?

8.4. Post-Kolloquium 39

Wie erstellt man aus dem Gyroskopwert dem aktuellen Winkel? Führen Sie für die

Sample Time eine Konstante ein, die später an die echte Ausführungsperiode an-

gepasst werden kann

8.4. Post-Kolloquium
Bereiten Sie sich auf das Kolloquium vor, indem Sie sich die Arbeitsergebnisse und ge-

fundenen Fehler gut dokumentieren. Verstehen Sie, was Sie programmiert haben.

40

A
b

b
i
l
d

u
n

g
8

.1
.:

I
2
C

D
a
t
e
n

s
t
r
o

m
z
u

m
A

u
s
w

e
r
t
e
n

9. Aufgabe 5

9.1. Wissen
In dieser Aufgabe soll das Wissen in Bezug auf betriebssystemeigene Funktionen erweitert

werden. Zur Erinnerung um im Zweifelsfall den richtigen Pfad zu finden: Der Zynq-7000

arbeitet mit Cortex A9 Cores. Wir nutzen die GNU Toolchain.

Alle Ergebnisse dieser Aufgabe werden im Post-Kolloquium besprochen.

9.1.1. Bedienung des Lauterbach-Debuggers
Die Trace32-Software enthält viele Komfort-Funktionen, die das Debugging aber auch die

Bedienung der Software erleichtern sollen.

Window

Die vielen Fenster können schnell unübersichtlich werden und überfordern Einsteiger

häufig. Daher können die Fenster automatisch angeordnet werden:

Window->Cascade oder Window->Tile

Anpassungen die während des Betriebs an den Fenstern vorgenommen wurden sind,

können in verschiedenen Konfigurationen gespeichert und geladen werden:

Window->Store Windows to... oder Window->Load Windows from...

Weitere Fenster können über die Lauterbach-Befehlszeile geöffnet werden, indem die

Caption des Fensters eingegeben wird. Viele der unter der Befehlszeile gelisteten Befehle

sind auch Fenster und sind je nach Anwendungszweck unterschiedlich nützlich.

So kann sich der Befehlsverlauf mit

1 History

angezeigt werden lassen und eine Übersicht aller Tasks findet sich mit

1 Task.task

Diese ist insbesondere dann hilfreich, wenn man sich mit Kontext-Wechsel beschäftigt.

Dies setzt aber voraus, dass die Tasks benannt wurden sind. Dazu benutzt man:

1 OSTaskNameSet(TASK_PRIORITY, TASK_NAME, &ERROR_CODE)

42

Break- und Watchpoints

Wie schon bei den Fenster-Einstellungen kann Trace32 auch Breakpoints permanent spei-

chern, sodass eine Debug-Session unterbrochen und am nächsten Arbeitstag fortgesetzt

werden kann. Das Speichern erreicht man mit:

1 STORE <filename>.cmm BREAK

Zum Laden benutzt man:

1 do <filename>.cmm

Um Watchpoints auf eine Variable zu setzen gibt es den Befehl

1 Var.Break.Set <variable_name>; /<access> /VarCONDition <condition>

<variable_name> ist mit der Variable zu ersetzen, die man überwachen möchte

<access> ist der Zugriff: ReadWrite, Read, Write

<condition> ist eine Bedingung in C-Style; zum Beispiel: (a == 3). Kann aber auch

weggelassen werden, falls bei jedem Zugriff getriggered werden soll.

Damit lassen sich auch schwer erreichbare Stellen debuggen. So kann man in den

Kontext-Wechsel eines bestimmten Tasks springen, indem man auf OSPrioHighRdy trig-

gered und als Bedingung die Priorität des aktuellen Tasks angibt:

1 Var.Break.Set OSPrioHighRdy; /Write /VarCONDition (OSPrioCur==<priority>)

Auch interessant ist es am Ende einer Funktion anzuhalten, zum Beispiel dann wenn

der Rücksprung nicht mehr funktioniert.

1 break.set Symbol.end(<function_name>)

Ergebnisse speichern

Die Software besitzt auch Funktionen, die die Dokumentation der Ergebnisse erleichtert.

So können Screenshots des übergeordneten Parent-Window gemacht werden:

Window->Screenshot to file...

Genauso wie Screenshots eines einzelner, untergeordneter Fensters gemacht werden

können. Dazu klickt man in die obere, linke Ecke des Fensters auf sein Icon und wählt

Window Screenshot to file...

9.2. Aufgabe 43

In diesem Menü kann der Fenster-Inhalt auch mit To Clipboard in Textform gespeichert

werden.

9.2. Aufgabe
Ziel soll es zunächst sein, die Methode

1 UCOSStartup()

zu untersuchen.

Warum wird diese Methode noch vor dem Code aus der Main aufgerufen?

Welchen Sinn hat diese Methode?

Was macht die Methode:

1 CPU_Init()

Welche Aufgabe hat die Funktion:

1 Mem_Init()

Muss diese Funktion aufgerufen werden?

Betrachten Sie die Funktion

1 OSInit ()

Was ist in diesem Kontext ein Hook?

Warum werden die Methoden

1 OS_InitMisc()

2 OS_InitRdyList()

3 OS_InitTCBList()

benötigt? Was würde passieren, würden sie nicht ausgeführt werden.

Inwiefern wird in dieser Methode Multitasking vorbereitet?

Was ist ein idle-Task und wofür wird er benötigt? Wo wird er erstellt? Welche Prio-

rität sollte er haben?

Was ist ein Startup-Task? Was passiert dort?

44

Erklären Sie den Sinn der Methode

1 OSStart ()

Was passiert in der Funktion

1 OSTaskCreateExt()

Was macht die Funktion

1 OSTaskStackInit()

Was macht folgende Methode:

1 OS_TCBInit()

Wie funktioniert die Methode

1 OStimeDly()

Untersuchen Sie die Methoden, warum wird eine kritische Sektion betreten?

1 OS_Sched() und OS_SchedNew()

Nachdem der Task erstellt wurde muss das Betriebssystem auch mit dem neuen

Task arbeiten.

1 OSStartHighRdy()

Wofür sind in dieser Funktion die Anweisungen in Zeile 202 bis 205 zuständig?

Warum ist ein Ausrufezeichen in manchen Befehlen? Was macht das Zirkumflex

hinter dem Befehl?

Was passiert bei einem Kontextswitch? Schreiben Sie die Arbeitsschritte auf. Finden

Sie heraus in welcher Methode der Kontextswitch ausgeführt wird. Welche wesent-

lichen Schritte werden abgearbeitet?

10. Aufgabe 6

10.1. Tracing
10.1.1. Funktionsdefinition
Unter Tracing bezeichnet man das Aufzeichnen des Programmablaufs, um diesen dann

später zur Analyse von Fehlern zu nutzen. Die Analyse kann nach der Ausführung des Pro-

gramms stattfinden. Auch Lese- und Schreibzugriffe auf Variablen können aufgezeichnet

werden. Abstürze, bei denen die Ursache in einem Speicherüberlauf oder Nullpointer-

Exceptions vermutet wird, können damit gelöst werden. Tracing kann auf verschiedene

Arten realisiert werden, die jeweils eigene Vor- und Nachteile mit sich bringen.

(Hardware-)Tracing lässt sich aber auch einsetzen, um den zeitlichen Ablauf des Pro-

gramms zu analysieren und so zum Beispiel Statistiken über die Worst-Case Execution

Time (WCET) anzustellen.

Software-Trace

Das untersuchte Programm wird so verändert, dass es die benötigten Informationen selbst

erzeugt. Dazu werden die gesammelten Daten in Variablen in den Zielgerät-RAM ge-

schrieben und später vom Debugger ausgelesen. Vorteile dieser Variante sind, dass die

Daten in beliebigem Umfang und beliebig genau bereitgestellt werden können. Gleich-

zeitig ist allerdings zu bedenken, dass die Hardware, auf der das Programm läuft, nun

auch die Datensammlung bewerkstelligen muss. Die logische Konsequenz ist die Verrin-

gerung der Geschwindigkeit der Ausführung und ein erhöhter Speicherbedarf. Auf Sys-

temen, auf denen kaum Leistung und Speicher zur Verfügung stehen, kann dies zu Pro-

blemen führen. Außerdem ergibt sich aus dieser Variante des Tracings ein hoher Einfluss

auf das Zeitverhalten des Systems. Bestehende Fehler können, während der Ausführung

mit Software Tracing, anders auftreten als ohne Software-Tracing.

Als Beispiel soll hier ein Programm dienen, welches durch einen externen Interrupt be-

einflusst wird: Die Anwendung reagiert auf einen Interrupt und stürzt im betrachteten

Fall ab. Dieser Absturz findet immer genau dann statt, wenn der Interrupt aktiviert wird,

während sich das Programm in Methode XY befindet. Der Versuch diesen Fehler mit Hilfe

von Software-Tracing zu lösen, verändert die Laufzeit des Programms so, dass der Inter-

rupt nun zu einem anderen Zeitpunkt im Programm auftritt. Das Programm stürzt nun

während des Debuggens nicht mehr ab. Jede dem Debuggen dienende Veränderung än-

dert das Zeitverhalten.

46

Abbildung 10.1.: Lauterbach Trace Debugger PowerTrace-II

Offchip-Trace

Im Gegensatz zum Software-Tracing kommt diese Methode des Tracings nicht ohne ex-

terne Trace-Hardware aus (siehe Abbildung 10.2). Sollen Informationen zum Zustand des

Systems zur Laufzeit aufgenommen werden, werden diese am Prozessor des Zielgerätes

abgenommen. Die übliche Methode bei Mikroprozessoren ist das Auslesen des Adress-

busses zum Speicher und einiger Steuersignale. Mithilfe dieser Daten kann der Programm-

ablauf rekonstruiert werden. Bei modernen Chips sind CPU Kerne, Haupt- und Massen-

speicher, Cache und Peripherie in einem Gehäuse integriert. Das macht es unmöglich den

Speicherbus abzugreifen. Um diese Systeme trotzdem noch mit Trace-Debugging nutzen

zu können, werden sogenannte Trace-Interfaces bereitgestellt. Auf ihnen wird in kom-

primierter Form der Programmfluss übertragen. Es handelt sich dabei meist um ein 4,

8 oder 16 Bit breiten Bus, über den mit Frequenzen bis 400 MHz Daten übertragen wer-

den. Die bereitgestellten Informationen liegen so vor, wie sie auch in der CPU vorliegen

würden, dass heißt es werden auch Speicherzugriffe aufgezeichnet. Es muss sich nicht um

etwaige fehlende Informationen über Lese-, aber vor allem Schreibzugriffe auf den Cache

gekümmert werden.

Onchip-Trace

Diese Methode des Tracings kommt ohne externen Trace-Speicher aus. Es gibt CPUs mit

einem Trace-Speicher, der in das System integriert ist (siehe Abbildung 10.3). Auf die-

sem werden ähnlich der Methode des Offchip-Tracings die benötigten Daten gespeichert

und können nach Beenden des Programms ausgelesen werden. Vorteil gegenüber dem

Software-Tracing ist, dass keine Änderungen am Programm vorgenommen werden müs-

sen. Im Vergleich zum Offchip-Tracing wird zwar kein externer Trace-Speicher benötigt,

10.1. Tracing 47

Debugger

Trace - Tool

Target

Core

Debug Interface

Trace
Interface

Debug Controller

Trace Memory

Trigger

Abbildung 10.2.: Funktionsweise Offchip Tracing

allerdings ist der interne Trace-Speicher aus Kostengründen und Platzgründen sehr klein

gehalten. Um diesen Nachteil zumindest teilweise zu kompensieren, gibt es häufig die

Möglichkeit das Programm zu stoppen und einen Interrupt auszulösen, wenn der inter-

ne Trace-Speicher voll ist. Dann können die Daten auf die Debugplattform übertragen

und das Programm weiter ausgeführt werden. Der Nachteil dieser Variante ist das benö-

tigte Starten und Stoppen und der damit verbundenen Eingriff in das Zeitverhalten des

Systems.

10.1.2. Art der Anwendung, Nutzung des Werkzeugs
Die Anwendungsmöglichkeiten von Tracing sind vielfältig. Oft ist es nötig, die Ausfüh-

rungszeit einer Methode zu kennen. Auch ist es nützlich die Register und Variablen ohne

Unterbrechung des Programms auslesen zu können. Wenn ein Programm abstürzt, macht

es Tracing möglich genau nachzuvollziehen, welche Funktionsaufrufe mit welchen Wer-

ten vor dem Absturz getätigt wurden. Programmkomponenten, die sich mit den vorhe-

rigen Debugwerkzeugen nur schwer oder gar nicht analysieren ließen, können nun auf

ihre Auswirkungen auf den Programmfluss überprüft werden. Dazu gehört zum Beispiel

erhöhte Interruptlast oder Unterbrechung durch höherpriore Tasks. Fehleranalyse von

Fehlern zur Laufzeit und die Analyse von Kommunikation über Busse wird einfacher.

In dieser Aufgabe sollen sie Trace-Points nutzen, um den Wechsel von einer Funktion zur

anderen darzustellen. Diese Tracepoints können zum Beispiel ein Taskset visualisieren,

indem sie zu Beginn und am Ende eines Tasks gesetzt werden.

48

DebuggerTarget

Core

Debug Interface

Trace
Controller

Debug Controller

Trace
Memory

Abbildung 10.3.: Funktionsweise Onchip Tracing

10.1.3. Grenzen und Nachteile
Trotz dessen, dass die beiden in Kapitel 10.2 vorgestellten Trace-Methoden von den Nach-

teilen bezüglich des Heisenbergeffekts beim SoftwareTracing nicht betroffen sind, haben

sie Nachteile. Dazu gehört der sehr hohe Kaufpreis solcher Systeme, der sich im nied-

rigen fünfstelligem Bereich bewegt. Außerdem ist die Unterstützung von Tracing unter

den Entwicklungsboards wesentlich weniger weit verbreitet, als das bei JTAG-Debugging

der Fall ist. Das Interface benötigt aufgrund der hohen Datenraten bei der Übertragung

viele Pins. Unterschiede zwischen den verschiedenen Trace-Methoden lassen sich in der

Tabelle 10.1 finden.

Trace - Methode Trace-
Hardware Trace - Größe Programm-

anpassung
Echtzeit-

verletzung

Software Trace keine klein ja erheblich

OffChip Trace ja groß keine keine

OnChip Trace keine klein keine keine

Tabelle 10.1.: Vergleich von Software-, Onchip- und Offchip- Trace

10.2. Lauterbach-Wissen 49

Diese Aufgabe soll Ihnen Methoden vermitteln, mit denen Sie die Auslastung des Sys-

tems beurteilen und optimieren können. Grundstein für die Überlegungen dieser Auf-

gabe ist ein System mit mehreren Tasks. Es stellt sich nun die Frage, wann welcher Task

CPU-Zeit in Anspruch nehmen darf. In der Aufgabe lernen Sie verschiede Scheduling

Algorithmen kennen und analysieren sie auf die Auswirkungen auf das Task-Set. Alle be-
nötigten Informationen zur Bearbeitung bekommen Sie aus den beigefügten Folien der
Übung und Vorlesung zur Lehrveranstaltung Rechnerstrukturen 2. In den Vorlesungsfoli-
en sind aus Kapitel 5, Folien 29 bis 59 relevant. Kapitel 9 und 10 der Übung helfen beim
Anwenden der Verfahren. Sie finden das benötigte Material in Ihrem Repository unter
RS2_Unterlagen.

10.2. Lauterbach-Wissen
10.2.1. Tracing Points
Das Aufzeichnen des gesamten Programmflusses ist oftmals nicht notwendig und meis-

tens eher störend beim Fehler finden, da die wichtigen Details in der Menge an Informa-

tionen untergehen. Daher ist es möglich das Tracing erst bei Bedarf zu aktivieren. Um

das Handling zu erleichtern, ist die Syntax bei Lauterbach zwischen Break-Points und

Tracing-Points sehr ähnlich (vgl. 9.1.1):

1 break.set <function_name> /program /TraceEnable

TraceEnable aktiviert das Tracing für einen kurzen Moment beim eintreten der Bedin-

gung oder des Events. Es erzeugt so zu sagen ein Snapshot. Dies ermöglicht es auch den

Zugriff auf eine Variable zu tracen und den Rest des Systems auszublenden:

1 var .break.set <variable_name> /<access> /TraceEnable

Leider stehen hardware-bedingt nur 4 TraceEnable-Points zur Verfügung. Daher greift

man auf Trace-On/-Off-Points zurück. Beim Erreichen eines Trace-On-Points wird das

Tracing aktiviert und wieder beendet beim Erreichen eines Trace-Off-Points.

1 break.set <function_name_1> /program /TraceON

2 break.set <function_name_2> /program /TraceOFF

Das Setzen von Tracepoints ist auch über die GUI möglich z.B. indem man im Source-

code ein Rechtsklick macht und Breakpoints->TraceEnable/-On/-Off auswählt.

Ebenso wie bei den Breakpoints ist die Verwendung des symbol-Befehls möglich [tra, S.

286]

50

Abbildung 10.4.: Verteilung dargestellt

Das Diagramm zeigt die Dauer zwischen OSQPost und OS_EventTaskRdy.

10.2.2. Darstellung
Die Darstellung der aufgezeichneten Daten übernimmt die Trace32 Software und kann

angezeigt werden mit (Abbildung 10.5):

1 trace . chart

Alternativ kann über die GUI gearbeitet werden mit Trace->Chart->Symbols.

Je nach Dauer und Menge der Daten kann die Darstellung etwas dauern.

Zudem kann Lauterbach die Verteilung bestimmter Werte in einer Statistik darstellen.

Der folgende Befehl erzeugt ein Diagramm, dass die Verteilung der Dauer zwischen den

beiden angegebenen Methoden darstellt (Abbildung 10.4).

1 Trace.STATistic.AddressDURation <function_name_1> <function_name_2>

Falls man erneut Tracen möchte, sollte man die gespeicherten Daten zurücksetzen mit:

1 Trace. Init

10.2. Lauterbach-Wissen 51

Abbildung 10.5.: Trace im Chart dargestellt

Ein langer und großer Trace, der zwar viele Daten enthält. Aber die wesentlichen Punkte

sind nicht sofort ersichtlich.

52

10.3. Aufgabenteil 1
Bearbeiten Sie das Arbeitsblatt und notieren Sie sich Ergebnisse und Vorgehensweisen.

Beantworten Sie außerdem folgende Fragen:

Was ist der Unterschied zwischen Analyse und Simulation?

Welche Arten der Taskaktivierung gibt es?

Erklären Sie die Begriffe Periode und Jitter

Was ist Präemption im Bezug auf Scheduling?

Was sind die Unterschiede zwischen TDMA und Round Robin?

Was ist RMS?

Hinweis: Nutzen sie für die Berechnungen das entsprechende Material aus der Vorlesung
Rechnerstrukturen 2.

Task Periode Jitter BCET WCET Priorität SPP SPNP

BCRT WCRT BCRT WCRT

Task 1 2ms 0ms 0,5 ms 1,0 ms

Task 2 1ms 0ms 0,1 ms 0,2 ms

Task 3 10ms 0ms 0,2 ms 0,2 ms 4,0 ms 4,0 ms

Task 4 5ms 0ms 0,2 ms 1,0 ms

Task 5 20ms 0ms 0,2 ms 0,5 ms 9,7 ms 8,3 ms

Aufgabe 1:

Vergeben sie die Prioritäten der Tasks nach RMS. Hinweis: 0 ist die höchste Priorität.

Aufgabe 2:

Berechnen sie die maximale Last, wenn alle Tasks auf demselben Prozessorkern ausgeführt werden. Was fällt
ihnen auf, wenn sie die berechnete Last mit der Auslastungsschranke aus dem Theorem von Liu/Layland zu
RMS vergleichen?

Aufgabe 3:

Berechnen sie für das gegebene Taskset die BCRT sowohl für SPP als auch für SPNP Scheduling.
Hinweis: Alle Tasks werden synchron zum Zeitpunkt t=0 aktiviert. Überlegen sie sich die Eigenschaften des
Tasksets. Hierfür wird keine Formel benötigt!

Aufgabe 4:

Ermitteln sie für Task 1 und Task 2 die WCRT, sowohl für SPP als auch SPNP, zeichnerisch.

Aufgabe 5:

Ermitteln sie für Task 4 die WCRT, für SPP rechnerisch und für SPNP zeichnerisch.
Hinweis: Nutzen sie für die Berechnung die Formel für die WCRT, welche sie aus der Vorlesung kennen.

Aufgabe 6:

Nehmen sie an, dass für das Taskset implizite Deadlines gelten, d.h. Deadline = Periode. Ist das Taskset unter
diesen Voraussetzungen „schedulable“?

Aufgabe 7:

Angenommen die Aktivierung von Task 1 hat einen Jitter von 0,5 ms, wie wirkt sich dies bei SPP Scheduling
auf die BCRT und WCRT von Task 2 und Task 4 aus?

RMS: Rate Monotonic Scheduling BCRT / WCRT: {Best / Worst} Case Response Time
SPP: Static Priority Preemptive BCET / WCET: {Best / Worst} Case Execution Time
SPNP: Static Priority Non-Preemptive

54

10.4. Aufgabenteil 2
Kompilieren Sie nun die Aufgabe 6 und laden diese auf das Board. In dieser Aufgabe wird

ein Tasksetsimulator genutzt, indem sich mehrere Tasks nach dem P-J-D Modell kon-

figurieren lassen. Tragen Sie zunächst die korrekten Prioritäten der Tasks in der Datei

src/gt_tasks.c ein.

Untersuchen Sie zunächst mit Hilfe der Tracingtechniken des Lauterbachs die Kali-

brierung des Tasksetsimulators. Der Simulator nutzt eine Schleife in der Funktion

1 __burn_wcet(CET,GT_CPU_OS_TASK_OFFSET,GT_CPU_CYCLE_SCALE);

um die BCET ≤ CET ≤ WCET zu simulieren. Das heißt der Task hat effektiv keine

Funktion sondern verbraucht nur die Rechenzeit CET. Die CET wird dabei für jede Ak-

tivierung zufällig zwischen der BCET und WCET gewählt. Um die Ausführungszeiten

des Simulators auf den Prozessor anzupassen müssen bestimmte Parameter korrekt ge-

setzt werden, da ansonsten die CET nicht den Sollwerten entsprechen. Ihre Aufgabe ist

es zunächst diese Parameter so zu konfigurieren, dass die Ergebnisse den Sollwerten ent-

sprechen. Die Parameter unterteilen sich in einen Scale-Wert und einen Offset. Der Scale-

Parameter garantiert die korrekte Ausführungszeit langer Delays. Der Offset muss korrekt

gesetzt werden, damit kurze Delays genau genug für eine Simulation des Taskssets sind.

Zu Beginn der Main-Funktion wird eine Methode zum Kalibrieren der Parameter aufge-

rufen. Der Kommentar zu der Methode erklärt die Funtionsweise. Messen Sie die Aus-

führungszeiten der von dem Taskset genutzen Funktion in der Methode GT_calibrate

indem Sie Tracepunkte nutzen. Die CET wird dabei exponentiell von 0,1ms auf 51,2ms

erhöht. Die Zeiten zwischen den Trace-Events können sie in der trace.list Darstellung ab-

lesen. Nutzen Sie zunächst weiter das Onchip-Tracing (zc706_onchip_trace.cmm), da bei der

Kalibrierung ja nur wenige Tracedaten generiert werden.

Erstellen Sie sich eine Tabelle mit Soll- und Ist-Werten für die einzelnen Schleifen-

Durchläufe in der Kalibrierungsfunktion. Nun können Sie das Verhältnis zwischen Soll-

und Ist-Werten ausrechnen und in einem Diagram darstellen lassen. Stellen Sie die Para-

meter so ein, dass 0, 96 ≤ IST/SOLL ≤ 1, 0 gilt.

Tipp: Passen Sie ihr .cmm Skript für Aufgabe 6 an, um wiederkehrende Arbeitsschritte

wie das Setzen von Break-/ Tracepunkten zu automatisieren!

Ist die Kalibrierung geglückt, sollen Sie das Taskset aus der theorethischen Aufgabe in

den Simulator übertragen und visualisieren. Der Taskssetsimulator erlaubt es, mehrere

Tasks nach dem Periode-Jitter Modell zu konfigurieren. Diese sind in der Datei APP/Auf-
gabe6/src/gt_tasks.c bereits mit den BCET und WCET Parametern aus dem Aufgabenblatt

definiert.

10.4. Aufgabenteil 2 55

Nach der Bearbeitung des Arbeitsblattes und der Kalibrierung des Simulators sollen Sie

nun untersuchen, wie sich das vorher berechnete Zeitverhalten auf einem realen System

verhält. Nutzen Sie im Folgenden OffChip-Tracing, indem Sie die zc706_offchip_trace.cmm
ausführen.

Vergleichen Sie die zc706_offchip_trace.cmm und zc706_onchip_trace.cmm. Wo liegen die

Unterschiede? Tipp: Tools wie meld oder vimdiff erleichtern die Arbeit.

In der Datei finden sich auch die folgenden Methoden:

1 GT_TaskActivationHook

2 GT_TaskStartHook

3 GT_TaskEndHook

4 GT_TaskSwHook

Mit ihnen lassen sich Aktionen auslösen, wenn ein Task bereit ist, gestartet, gescheduled

oder beendet wird.

Erweitern Sie diese Methoden so, dass sie unterscheiden können, welcher Task ak-

tiviert bzw. beendet wurde.

Benutzen Sie zu erst Trace-Enable Points, um das Scheduling eines einzelnen Tasks

aufzuzeichnen (Activated, Scheduled, Not-Scheduled, Finished).

Benutzen Sie anschließend Trace-On/-Off Points, um das Verhalten aller Tasks zu

untersuchen.

Erstellen Sie eine Statistik über die Verteilung der WCET und der WCRT jedes

Tasks.

Vergessen Sie nicht ihre Ergebnisse zu dokumentieren z.B. mit Screenshots oder als

Text-Export.

11. Aufgabe 7

11.1. Aufgabenteil 1
In dieser Aufgabe sollen die zuvor erstellten Programmodule zusammengesetzt werden.

Es soll ein balancierender Roboter entstehen. Erstellen Sie auf Basis des in Aufgabe 6

genutzten Taskset-Simulators ein Taskset, dass ihre Tasks periodisch ausführt. Denken

Sie daran ihre Init-Funktionen einzutragen. Nachfolgend werden die Anforderungen an

die bisherigen Programme aufgelistet:

11.1.1. PID
Eingänge:

Aktuellen Winkel der IMU

Sample Time

Funktion

PID Wert erstellen

Ausgänge

PID Wert zwischen -1000 und 1000

Hinweis: Der PID Regler mittelt für die ersten 10 Sekunden nach Start den Nullpunkt zur

Kalibrierung.

11.1.2. IMU
Funktion

IMU initialisieren

Werte über I2C auslesen

Ausgänge

IMU Winkel

11.2. Aufgabenteil 2 57

11.1.3. Motortreiber
Eingänge

PID Wert

Funktion

Ansteuern der Richtung der Motoren für vorwärts und rückwärts

Regeln der Frequenz der Steps: max. Frequenz: min 800us/step, max 100us /step

11.2. Aufgabenteil 2
Sie finden sich nun in einem Szenario der Wirtschaft: Ihr Vorgesetzter schränkt ihre Res-

sourcen auf dem genutzten Steuergerät ein, weil diese anderweitig genutzt werden. Ver-

ändern Sie dazu in der Datei gt_tasks.c das Struct GT_AllTasks wie folgt und fügen Sie die

Zeile

1 {50, 0, 0, {3, 5}},

Quellcode 11.1: Ergänzung Task Timing Struct

hinzu. Außerdem sollen Sie in dem Struct GT_Tasks die Zeile

1 { GT_TASK_EXT , GT_ACT_INT , 1, 33, mpu9250_Imu_Init, mpu9250_CalculateAngle , NULL,

GT_RUNABLE_NULL, GT_INTERNAL_NULL, (void ∗)>_AllTasks[1]},

Quellcode 11.2: Ergänzung Task Struct

hinzufügen. Achten Sie darauf die Konstante GT_NUM_OF_TASKS anzupassen. Ihre Auf-

gabe ist es nun, die Funktionalität des Roboters wiederherzustellen. Untersuchen Sie da-

für, wo im Programm CPU Zeit eingespart werden kann.

Um die in diesem Bereich genutzte CPU-Zeit zu reduzieren bietet es sich an die Kom-

munikation mit der inertialen Messeinheit zu verändern. Die Hardwareeinheit des Xynq-

7000 macht es möglich nach jeder abgeschlossenen Kommunikation einen Interrupt aus-

zulösen. Wir können die Kontrolle somit während des Senden an andere Tasks abgeben.

Orientieren Sie sich für das Erstellen und Verknüpfen des Interrupts an dem des Timers.

Suchen Sie nach geeigneten Funktionen vergleichbar zu denen, die bei der Einrichtung

des Timer-Interrupts genutzt wurden. Grundsätzlich sollten Sie wie folgt vorgehen:

Erstellen Sie einen Interrupt und suchen Sie die korrekte Interrupt-ID heraus, ge-

ben Sie als Interrupt-Handler MasterInterruptHandler an.

58

Die I2C Instanz hat einen Statushandler der angegeben werden kann, er bietet sich

an um die Semaphore zu pushen

Die Funktionen XIicPs_MasterSendPolled und XIicPs_MasterRcvPolled haben passen-

de Gegenstücke zur Nutzung mit Interrupts der I2C Hardware. Nach dem Aufrufen

der Funktion muss auf die Fertigstellung gewartet werden. Dies wird über den Se-

maphore realisiert.

Wir erstellen einen Interrupt der dann ausgelöst wird, wenn der Timer das Ende des

Intervalls erreicht hat. Die Interrupt ID ist TTC_PWM_INTR_ID. Dazu können die beiden

folgenden Methoden genutzt werden.

1 UCOS_IntVectSet(...) ;

2 UCOS_IntSrcEn (...) ;

Die Interrupts werden nur dann ausgelöst, wenn der Timer entsprechend konfiguriert

wird. Tipp: Nutzen Sie XTTCPS_IXR_INTERVAL_MASK

1 XTtcPs_EnableInterrupts (...)

Es muss nun eine Methode erstellt werden, die ausgeführt wird wenn der Interrupt

aufgerufen wurde. In dem Interrupt muss das Interruptflag wieder zurückgesetzt werden,

damit der normale Programmablauf fortgeführt werden kann.

1 u32 StatusEvent;

2 StatusEvent = XTtcPs_GetInterruptStatus (...) ;

3 XTtcPs_ClearInterruptStatus (...) ;

Akronyme

DMA Direct Memory Access

elf Executable and Linking Format

GCC GNU Compiler Collection

GDB GNU-Debugger

HLL High Level Language

IDE Integrated Development Environment

JTAG Joint Test Action Group

MMU Memory Management Unit

A. Anhang

A.0.1. Parameter
I2C Busgeschwindigkeit: 100000

I2C Device ID: XPAR_XIICPS_1_DEVICE_ID

MPU9250 I2C Adresse: 0x68

Timer 0 Device ID: XPAR_PS7_TTC_0_DEVICE_ID

Timer 1 Device ID: XPAR_PS7_TTC_1_DEVICE_ID

Timer 0 Interrupt ID: XPAR_XTTCPS_0_INTR

Literaturverzeichnis

[All] Allegro. A4988, DMOS Microstepping Driver. Verfügbar online unter

https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_

driver_with_translator.pdf; abgerufen am 22.4.2019. 29

[arm] Infocenter von ARM. Verfügbar online unter http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.faqs/ka4141.html; abgerufen am

22.4.2019. 24

[con] University of Illinois System Website. Verfügbar online unter https://www.

cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html;

abgerufen am 22.4.2019.

[ech] Vorlesungsfolien der Uni Erlangen. Verfügbar online unter http:

//www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/

stp1-pa-ws03-kapitel4.pdf; abgerufen am 22.4.2019. 5

[feSuK14] Fraunhofer-Institut für eingebettete Systeme und Kommunikati-

onstechnik. Jahresbericht. 2014. Verfügbar online unter https:

//www.esk.fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_

Fraunhofer_ESK_2013-2014.pdf; abgerufen am 22.4.2019.

[Gra] Philipp Graf. Verfügbar online unter https://pdfs.semanticscholar.

org/0aa7/b91e99d9749adbdca55286c31c0c990fe849.pdf; abgerufen am

22.4.2019. 24

[HiB] Team HiBit. Complementary filter and relative orientation with

MPU9250. Verfügbar online unter https://www.hackster.io/hibit/

complementary-filter-and-relative-orientation-with-mpu9250-d4f79d;

abgerufen am 08.04.2024. 34

[i2c] I2C Communication. Verfügbar online unter https://www.totalphase.com/

support/articles/200349156-I2C-Background; abgerufen am 22.4.2019. 34

[Inva] Invensense. MPU9250 Datenblatt. Verfügbar online unter http://www.

invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.

pdf; abgerufen am 22.4.2019. 34

[Invb] Invensense. MPU9250 Register Map. Verfügbar online unter http://www.

invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.

pdf; abgerufen am 22.4.2019. 34

https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_with_translator.pdf
https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_with_translator.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4141.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4141.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/stp1-pa-ws03-kapitel4.pdf
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/stp1-pa-ws03-kapitel4.pdf
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/stp1-pa-ws03-kapitel4.pdf
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_Fraunhofer_ESK_2013-2014.pdf
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_Fraunhofer_ESK_2013-2014.pdf
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_Fraunhofer_ESK_2013-2014.pdf
https://pdfs.semanticscholar.org/0aa7/b91e99d9749adbdca55286c31c0c990fe849.pdf
https://pdfs.semanticscholar.org/0aa7/b91e99d9749adbdca55286c31c0c990fe849.pdf
https://www.hackster.io/hibit/complementary-filter-and-relative-orientation-with-mpu9250-d4f79d
https://www.hackster.io/hibit/complementary-filter-and-relative-orientation-with-mpu9250-d4f79d
https://www.totalphase.com/support/articles/200349156-I2C-Background
https://www.totalphase.com/support/articles/200349156-I2C-Background
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.pdf
http://www.invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.pdf
http://www.invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.pdf

62 Literaturverzeichnis

[jta] Corelis JTAG Interface and Boundary-Scan Educational Resources. Ver-

fügbar online unter https://www.corelis.com/education/tutorials/

jtag-tutorial/what-is-jtag/; abgerufen am 22.4.2019. 22

[Koo] Phil Koopman. Better Embedded System SW: Blog to the Book:

Better Embedded System Software. Verfügbar online unter https:

//betterembsw.blogspot.com/2012/12/software-timing-loops.html;

abgerufen am 22.4.2019.

[Lab02] Jean J Labrosse. MicroC/OS-II: the real-time kernel. Taylor & Francis US, 2002.

[lau] Feature Overview Lauterbach Debugger. Verfügbar online unter https://www.

lauterbach.com/frames.html?home.html; abgerufen am 10.10.2019. 3

[Lau14] Lauterbach. Lauterbach iprobe user’s guide. 2014. Verfügbar online

unter http://www2.lauterbach.com/pdf/iprobe_user.pdf; abgerufen am

22.4.2019. 34

[mak] C-HowTo: Makefile. Verfügbar online unter http://www.c-howto.de/

tutorial/makefiles/; abgerufen am 22.4.2019. 11

[mbe] mbed.org, ARM, Timer and Interrupts. Verfügbar online unter

https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_

timers_and_interrupts.pdf; abgerufen am 22.4.2019.

[mic] Micrium Documentation. Verfügbar online unter https://micrium.

atlassian.net/wiki/spaces/osiidoc/overview; abgerufen am 05.05.2022.

18

[RS14] Universität Mannheim Robert Schieler. Building and using a cross develop-

ment tool chain. 2014. Verfügbar online unter ftp://gcc.gnu.org/pub/gcc/

summit/2003/BuildingandUsingaCrossDevelopmentToolChain.pdf; abge-

rufen am 22.4.2019. 11

[tra] General Function Reference. Verfügbar online unter https://www2.

lauterbach.com/pdf/general_func.pdf; abgerufen am 25.05.2020. 49

[wik] Erstellung von Message Queues. Verfügbar online unter https:

//wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/

an1005_inter-process_communication_.pdf; abgerufen am 21.5.2019.

18

[Xil18] Xilings. Zynq-7000 SoC, Technical Reference Manual, 2018. 29

[zc7] Feature Overview Xilinx ZC706. Verfügbar online unter https://www.

xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html; abgerufen

am 10.10.2019. 3

https://www.corelis.com/education/tutorials/jtag-tutorial/what-is-jtag/
https://www.corelis.com/education/tutorials/jtag-tutorial/what-is-jtag/
https://betterembsw.blogspot.com/2012/12/software-timing-loops.html
https://betterembsw.blogspot.com/2012/12/software-timing-loops.html
https://www.lauterbach.com/frames.html?home.html
https://www.lauterbach.com/frames.html?home.html
http://www2.lauterbach.com/pdf/iprobe_user.pdf
http://www.c-howto.de/tutorial/makefiles/
http://www.c-howto.de/tutorial/makefiles/
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_timers_and_interrupts.pdf
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_timers_and_interrupts.pdf
https://micrium.atlassian.net/wiki/spaces/osiidoc/overview
https://micrium.atlassian.net/wiki/spaces/osiidoc/overview
ftp://gcc.gnu.org/pub/gcc/summit/2003/Building and Using a Cross Development Tool Chain.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2003/Building and Using a Cross Development Tool Chain.pdf
https://www2.lauterbach.com/pdf/general_func.pdf
https://www2.lauterbach.com/pdf/general_func.pdf
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/an1005_inter-process_communication_.pdf
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/an1005_inter-process_communication_.pdf
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/an1005_inter-process_communication_.pdf
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

Laurenz Borchers, Kai-Björn Gemlau, Sebastian Abel, Tim Smektala
Institut für Datentechnik und Kommunikationsnetze
TU Braunschweig

	Einleitung
	Motivation
	Lehrziel
	Anwendungsfall

	Hardware und Aufbau
	Hardware

	Grundlagenwissen
	Echtzeitsysteme
	Debugging

	Coding Guidelines
	Regeln

	Aufgabe 1
	Wissen
	Pre-Kolloquium
	Aufgabenstellung

	Aufgabe 2
	Wissen
	Aufgabenstellung
	Post-Kolloquium

	Aufgabe 3
	Wissen
	Pre-Kolloquium
	Aufgabe
	Post-Kolloquium

	Aufgabe 4
	Wissen
	Pre-Kolloquium
	Aufgabe
	Post-Kolloquium

	Aufgabe 5
	Wissen
	Aufgabe

	Aufgabe 6
	Tracing
	Lauterbach-Wissen
	Aufgabenteil 1
	Aufgabenteil 2

	Aufgabe 7
	Aufgabenteil 1
	Aufgabenteil 2

	Akronyme
	Anhang
	Literaturverzeichnis

