oVita,
,é‘iﬁ % Technische ; INSTITUTE OF
5% %5 Universitit ’ COMPUTER AND

U o v
-] s Braunschweig |l | - _ NETWORK ENGINEERING

v,' v

c¥

Rechnerstrukturen 2 — Ubung 10

Structure and Mechanisms of the MicroC/OS-Il Microkernel

Integrating different functionality on a processor

Different applications executing on the same processor may NOTE:
= Cause resource conflicts Some aspects are
« CPU time specific to MicroC/OS-ll
and are implemented
* Memory differently in other
» Peripherals microkernels

= Require arbitration for these conflicts

= Scheduler
= Memory Management
= Semaphores

Often these conflicts are resolved by an operating system or runtime environment

1Ly

:’., £ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 2
I3
T
w

C

:?*f_ Technische

Braunschweig

~°N
$-)
&
<
o 1
5
+
o,
s

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

What does a microkernel do?

= Task Scheduling

= [nterrupt Handling

» Provide Communication Primitives
» Provide Synchronization Primitives
= Memory Management

= Provide Timebase

,1he kernel is the part of a multitasking system responsible for management of tasks
(i.e., for managing the CPU's time) and communication between tasks.”

MicroC/OS-Il — The Real-Time Kernel

LL
o .?Q

% Technische
S %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 3

% Braunschweig
C

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

SCHEDULING

Technische
£ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 4

Braunschweig

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Task Scheduling

= Atask, also called thread, is a simple program that thinks it has the CPU all to itself.“ MicroC/OS-Il — The
Real-Time Kernel

» The scheduler, also called the dispatcher, is the part of the kernel responsible for determining which task
runs next.” MicroC/OS-Il — The Real-Time Kernel

N S

Scheduler

A 4

|

1Ly

“a% Technische
%E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 5

g
o
B

C

Braunschweig

~°N
-
&
<
b 1
5
+
e,
s

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Writing a task in MicroC/OS-Il
= Writing a task

// do something periodically

« Ataskis a C function
— nheeds to have a given signature
* Implements a while(1) loop

— never stops executing until explicitly shut down via
OSTaskDelete

« Has at least one blocking function call to allow other tasks to

execute, otherwise it will prevent the execution of tasks with a lower
priority

1Ly

Universitat 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 6
Braunschweig

£ el .
St | st Technische
Ll %;

-‘-‘@‘

3 X
w ~
s 5
¥s

C

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Creating Tasks and Starting the Scheduler

INT8U prio = 3; // declare task priority
void *pTaskArg = 0; // no task arguments used
OSInit(); // init OS

Open Questions:

= How does a scheduler determine which task should run next?

= How does the scheduler start, stop and switch tasks, i.e. perform
a context switch?

= Why does each task need a stack?

1Ly

Braunschweig
INSTITUTE OF
COMPUTER AND

NETWORK ENGINEERING

“:;'5 2 Technische
%E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 7
-‘-‘@‘

3
w ~
s 5
¥s

C

Task States (simplified)

= Only tasks in the running and ready state may be chosen by the scheduler for execution

= Waiting tasks are in a blocking function call, e.g. OSTimeDly or OSQPend, and have to wait for a
condition to become ready

Blocking function

Unblocking functio
call

call

Enter Interrupt

Context Swittg

Task ISR
Running Running

Preemptiop
Exit Interrupt

£,
“s% Technische
¥ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 8

(%45 Braunschweig
N5

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Required Steps for Context Switches

= Interrupt currently executing task

= Save the registers of the task to be suspended to memory
= Program counter (PC)

= processor status word (PSW)

» Registers

= Stack Pointer (SP)
= Restore the registers of the task to be resumed
= Resume execution

1Ly

:’., £ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 9
I3
T
w

C

:?*f_ Technische

Braunschweig

~°N
$-)
&
<
o 1
5
+
o,
s

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Task Control Block
= Task Control Blocks (OS_TCB) hold a task‘s state and parameters

typedef struct os_tcb {
struct os tcb *OSTCBNext; // Pointer to next TCB in TCB list
struct os tcb *OSTCBPrev; // Pointer to previous TCB in TCB list

} OS_TCB;

WLy,
;”;;s «a% Technische
3*_; % Universitat 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 10
%4745 Braunschweig

g INSTITUTE OF

COMPUTER AND
NETWORK ENGINEERING

LL
o .?Q

2 Technische
3 %E Universitit

Performing a Context Switch (Preconditions)

Low Priority Task

OS_TCB
OSTCBCur —» | StackPtr

High Priority Task

OS_TCB
OSHighRdy —| StackPtr

CPU
Low SP Low
Memory R4 Memory
A
Stack R1 R3"
Growth R2"
PC R1°
PC’
High High
Memory Memory

20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 11

% Braunschweig
C

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Performing a Context Switch (Saving Context)

Low Priority Task High Priority Task
OS_TCB OS_TCB
OSTCBCur — | StackPtr. OSHighRdy —| StackPtr
....... CPU

Low SP Low

Memory s Memory

: R4
A :
R4 . 2‘;’ R4 |+

Stack R3 T R1 R3'
GI‘OWth R2 ; E. R2s
R1 PC R1'
4' ________ —'E ‘

PC e : vy PC ‘
PSW |4 PSW
High High

1%, Technische Memory Memory

3 %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 12

% Braunschweig
C

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Performing a Context Switch (Restoring Context)

Low Priority Task High Priority Task
OS_TCB OS_TCB
OSTCBCur — | StackPtr OSHighRdy — |..-StackPtr
OSTCBCur =+
CPU “““““
Low SP Low
Memory ‘ " Memory
R4 :
A . R3’ : -
R4 R2s i'"..__ . R4‘ -
Stack R3 =¥ P R3f
Growth R? R2
R1 PC | | R1'
PC PSW‘ é"“ ------------------- ; PC‘
PSW [PsSwW’
High High
1%, Technische Memory Memory
3 %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 13

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

% Braunschweig
C

Context Switch Pseudo-Code

Implemented as Software-Interrupt
Calling ISR automatically pushes PSW and PC to stack

Returning from ISR automatically pops PSW and PC from stack

Remaining part implemented in ISR
Platform-dependent implementation

Usually written in assembly

PUSH R1l, R2, R3, R4 onto the current stack;
OSTCBCur->0STCBStkPtr = SP;

OSTCBCur = OSTCBHighRdy;

SP = OSTCBCur->0OSTCBStkPtr;
POP R4, R3, R2, Rl from the new stack;

Execute ,return from interrupt"™ instruction

1Ly
-

&

Qﬁ Technische
%5 Universitat 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 14

%25 Braunschweig
cP

%
.

=)
&
]
4]
L]

‘T

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Determining highest priority task ready to run

How do we determine the highest priority task, which is
ready to execute?

= MicroC/OS-Il is targeted at real-time applications
= Determining highest priority ready task has to fulfill timing requirements

= Time must not depend on the number of tasks — O(1)

LL
o .?Q

gﬁ 2 Technische
3 %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 15
{f’ Braunschweig

o3

7, -
Oxsen

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Determining highest priority task ready to run

= Why not using a list of ready tasks sorted by priority?
—>Sorting or list parsing cannot be done in O(1)

—>Would not be feasible for real-time systems as execution time would depend on the number of
tasks

1Ly

3% Technische
%E Universitat 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 16

g
N
w

C

Braunschweig

~°N
-
&
<
b 1
5
+

e,

s

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Determining highest priority task ready to run

» Each task ready torunisin aready list consisting of two variables
= INT8U OSRdyGroup — Bitiis setto 1 if any bitin OSRdyTbl[i] issetto 1

" INT8U OSRdAyTbl[8] — Indicates which task in the group is ready to run

Highest Priority

OSRdyTbl[8]

/7165|432 |1]|0
15(14{13({12({11({10| 9| 8
23|22|21|20|19|18(17|16
31|30|29|28|27|26|25|24
39|38|37|36|35|34|{33|32
47|46(45|44|43|42|41|40
55|54(53|52|51|50(49|48
63/62(61/60|59|58|57|56

] \

Lowest Priority

OSRdyGroup|7 6|5(4|3[2]|1 O|
A 4 A4 4

; il

NOoOs WNE O

LL
o .?Q

gﬁ 2 Technische
3 %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 17
22e Braunschweig

o3

7, "
Ongcn

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Making a task ready to run

» Task's priority is devided into 2 fields
= 3bits for bit position in 0SRdyGroup and index to 0SRdyTbl

= 3bits for bit position in 0SRAyTbl [index]
Task Priority |0 OlY|Y YI_X X XI

Bit Position in OSRdyGroup and Bit Position in OSRdyTb1l [Index]
Index for OSRAyTb1[]

« O0SMapTbl[] is a precompiled table mapping bit position to bit mask
— e.¢g. OSMapTbl[2] maps to 0b00000100

 Code to make a task ready to run:

OSRdyGrp |= OSMapTbl [prio >> 3]
OSRdyTbl [prio >> 3] |= OSMapTbl[prio & 0x07]
c'«lf‘%
3+ Technische
3 %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 18

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

% Braunschweig
C

Determining highest priority task ready to run

= Finding highest priority task ready to run through another precompiled table
= OSUnMapTbl [bitmask] returns first bit that is one from a given bitmask

" £.J. 0SUnMapTbl [0b00101010] contains the value 1

 Finding highest priority task ready to run

y = 0SUnMapTbl [OSRdyGrp] ;
% = OSUnMapTbl [OSRdAyTbl[y]];
prio = (y << 3) + x;

« Some architectures directly support this technique as assembler
instructions

— ,Count leading zeros® -> clz
— ,Count trailing zeros" -> ctz

SALL
o .?Q

2 Technische
e %‘ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 19

% Braunschweig
C

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

OSUnMapTbl Example

{

const OSUnMapTbl[256]

INT8U

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* 0x00 to OxOF
/* 0x10 to Ox1F
/* 0x20 to O0x2F
/* 0x30 to Ox3F
/* 0x40 to O0x4F
/* 0x50 to Ox5F
/* 0x60 to Ox6F
/* 0x70 to Ox7F
/* 0x80 to Ox8F
/* 0x90 to Ox9F
/* 0xAQ0 to OxAF
/* 0xB0 to OxBF
/* 0xCO to OxCF
/* 0xD0 to OxDF
/* 0xEQ0 to OXEF
/* 0xF0 to OXFF

b7

Use OSUnMapThl to find the lowest "1 in 36

2

OSUnMapTbl[36]

36

-> 0b00100100

Q‘*{

LL

%

]
=
(7]
g
c
=
o
4

20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 20

Universitit

&

=)
~
]
4]

A
3
;%Ecﬂ-d*

%

NETWORK ENGINEERING

g
5 <

o
M
5 =
=2
= o
==
2o
Z0

Braunschweig

g

COMMUNICATION

Technische
£ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 21

Braunschweig

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Communication through Message Queues

Message queues allow to

send a message between two tasks
l.e. pass a pointer to a memory location

manage messages in FIFO (ring buffer) and LIFO (stack buffer)

receive messages in blocking or non-blocking way

Sending Receiving
Task Task
Technische
£ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 22

'~ Braunschweig

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Queue Communication
» Code for message queue usage

Create Message Queue:

void *QMem[NumEntries]; // memory to manage queue content
OS_EVENT MsgQ; // pointer to queue

MsgQ = OSQCreate (QMem, NumEntries); // create queue

Sending Task:

void *data = &messageToSend; // pointer to data to send

err = OSQPost (MsgQ, data); // post pointer in queue

Receiving Task:
void *data; // pointer to data to receive

data = OSQPend (MsgQ, timeout, &err); // get pointer to message
// blocking method

data = OSQAccept (MsgQ, &err) ; // get pointer to message
// non blocking method

1L
0« v&
&
] -
1=
L]

-

oA
)

'%a Technische
% %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 23
'~ Braunschweig

Topscud INSTITUTE OF
COMPUTER AND

NETWORK ENGINEERING

Blocking Receive from a Message Queue
= Pseudo-Code for blocking receive

void *OSQPend (pMsgQ, timeout, err) {
if queue not empty

acquire pointer to message from buffer

OSQAccept

decrement number of messages

return message pointer

else
set timeout for task in OS_TCB
register queue as waiting event in OS_TCB
call scheduler
acquire pointer to message from buffer
decrement number of messages

return message pointer

1L
0« &,

'%a Technische
%5 Universitat 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 24

S :
‘+~ Braunschwei
'oi\"scﬂ-d g

oA
I
-
]
L)
)

y INSTITUTE OF

COMPUTER AND
NETWORK ENGINEERING

MEMORY MANAGEMENT

Technische
£ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 25

Braunschweig

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Memory Management in MicroC/OS-II

Many Microkernels do not provide dynamic memory allocation, i.e. no malloc()

not required for many applications

generally not real-time capable, because allocation time often depends on the history of previous
allocations

Dynamic allocation of static memory

Creating a Memory Partition:

OS_MEM *MemPartition; // memory partition
INT8U Memory[100][64]; // 6400 bytes of memory
MemPartition = OSMemCreate (Memory, 100, 64);

// create memory partition with
// 100 blocks of 64 byte each

Retrieving and Returning Memory Blocks:

void *memBlock; // pointer to memory block
memBlock = OMemGet (MemPartition, err); // retrieve memory block
OSMemPut (MemPartition, memBlock) ; // return memory block
3"% '%ﬁ Technische
3 %E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 26
‘5,:%; i‘;‘-’ Braunschweig
¥sCH INSTITUTE OF

COMPUTER AND
NETWORK ENGINEERING

Memory Management Structure
OS_MEM *MemPartition; // memory partition
INT8U Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate (Memory, 100, 64);

// create memory partition with
// 100 blocks of 64 byte each

OS_MEM *MemPartition INT8U Memory[] []

L > [Osmemaddr —
OSMemFreelist
OSMemBlksize
OSMemNBlks
OSMemNFree

RN _R_S

!

&,

&

L
-
E
-

Qﬁ Technische
%5 Universitat 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 27

% Braunschweig
cP

0'«
[=)
%
Py 3
Ons. INSTITUTE OF
COMPUTER AND

NETWORK ENGINEERING

Properties of Memory Management

= Static block size prevents fragmentation

» no defragmentation required — makes real-time implementation easier
= Management of free blocks in list

= blocks are retrieved from beginning of list

» blocks are returned to beginning of list

—-0O(1) allocation and deallocation

= Management of blocks within memory partition
—>Reduction of overhead

1Ly

:’., £ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 28
9
5
w

C

:?*f_ Technische

Braunschweig

~°N
$-)
&
<
o 1
5
+

o,

s

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Using Tasks, Queues and Memory Management

EXAMPLE

Technische
£ Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 29

'~ Braunschweig

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Example

Message Queue

Tx OSQPost () > OSQPend ()
Task |
~\\~ ,—”V
S -
k \\\ - - Vs
\ N\\ - I'
\ R W i 1 - ’
AN write W | ! - J/
\
\ message : [/'
OSMemGet () ! : /. OSMemPut ()
\ 1 1 U4
\\ I i ,/
\ | i /
\ - F] ,I
Message Memory Partition \\ ¥
OSMemAddr __—7 —> —> —>
OSMemFreelist —
OSMemBlksize
OSMemNBlks
OSMemNF'ree
c'«lf‘%
g‘% 3+ Technische _
U) niversita .Ul. rnst, Gemiau, Harnau, Feec ae
S %‘ Universitit 20.01.2021 | Ernst, Gemlau, H Peeck | Slide 30
%:31; {44;‘-’ Braunschweig
Oxsen INSTITUTE OF

COMPUTER AND
NETWORK ENGINEERING

Summary

What functionality does a microkernel do?
» Task Scheduling

Interrupt Handling

Provide Communication Primitives

Provide Synchronization Primitives

Memory Management
* Provide Timebase

How does scheduling in a microkernel work?
» Performing a context switch
= Determining highest priority task in O(1)

Code examples on how to use a microkernel
= Writing and starting tasks
= Creating and using message queues
= Creating and using memory partitions

!

&,

&

L
-
E
-

Qﬁ Technische
%E Universitit 20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 31

% Braunschweig
cP

0'«
o)
a

-

U
o5
*
bi\fs

7,

INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

