
Rechnerstrukturen 2 – Übung 10 

Structure and Mechanisms of the MicroC/OS-II Microkernel



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 2

Integrating different functionality on a processor

Different applications executing on the same processor may

 Cause resource conflicts

 CPU time

 Memory

 Peripherals

 …

 Require arbitration for these conflicts

 Scheduler

 Memory Management

 Semaphores

 …

Often these conflicts are resolved by an operating system or runtime environment

NOTE:

Some aspects are

specific to MicroC/OS-II 

and are implemented

differently in other

microkernels



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 3

What does a microkernel do?

 Task Scheduling

 Interrupt Handling

 Provide Communication Primitives

 Provide Synchronization Primitives

 Memory Management

 Provide Timebase

„The kernel is the part of a multitasking system responsible for management of tasks

(i.e., for managing the CPU‘s time) and communication between tasks.“

MicroC/OS-II – The Real-Time Kernel



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 4

SCHEDULING



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 5

Task Scheduling

 „A task, also called thread, is a simple program that thinks it has the CPU all to itself.“ MicroC/OS-II – The 

Real-Time Kernel

 „The scheduler, also called the dispatcher, is the part of the kernel responsible for determining which task

runs next.“ MicroC/OS-II – The Real-Time Kernel

CPU

Task 1 Task 2 Task n

Scheduler



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 6

void task(void *pTaskArg){

while(1){

OSTimeDly(5);

// do something periodically

}

} // here be dragons

Writing a task in MicroC/OS-II

 Writing a task

• A task is a C function

– needs to have a given signature

• Implements a while(1) loop

– never stops executing until explicitly shut down via 

OSTaskDelete

• Has at least one blocking function call to allow other tasks to

execute, otherwise it will prevent the execution of tasks with a lower

priority

void task(void *pTaskArg){

while(1){

OSTimeDly(5);

} // here be dragons

never stops executing until explicitly shut down via 

OSTaskDelete



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 7

OS_STK stack[stacksize]; // declare stack of stacksize bytes

INT8U prio = 3; // declare task priority

void *pTaskArg = 0; // no task arguments used

OSInit(); // init OS

err8 = OSTaskCreate (

task, // pointer to task function

pTaskArg, // pointer to task arguments

&stack[stacksize – 1],// pointer to stack

prio); // task priority

OSStart(); // start the scheduler

Creating Tasks and Starting the Scheduler

OS_STK stack[stacksize]; // declare stack of stacksize bytes

err8 = OSTaskCreate (

task, // pointer to task function

pTaskArg, // pointer to task arguments

&stack[stacksize – 1],// pointer to stack

prio); // task priority

OSStart(); // start the scheduler

Open Questions:

 How does a scheduler determine which task should run next?

 How does the scheduler start, stop and switch tasks, i.e. perform

a context switch?

 Why does each task need a stack?



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 8

Task States (simplified)

 Only tasks in the running and ready state may be chosen by the scheduler for execution

 Waiting tasks are in a blocking function call, e.g. OSTimeDly or OSQPend, and have to wait for a 

condition to become ready

Task 

Waiting

Task 

Ready
Task 

Running

ISR 

Running

Unblocking function

call

Context Switch

Preemption

Blocking function

call

Enter Interrupt

Exit Interrupt



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 9

Required Steps for Context Switches 

 Interrupt currently executing task

 Save the registers of the task to be suspended to memory

 Program counter (PC)

 processor status word (PSW)

 Registers

 Stack Pointer (SP)

 Restore the registers of the task to be resumed

 Resume execution



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 10

Task Control Block

 Task Control Blocks (OS_TCB) hold a task‘s state and parameters

typedef struct os_tcb {

struct os_tcb *OSTCBNext; // Pointer to next TCB in TCB list

struct os_tcb *OSTCBPrev; // Pointer to previous TCB in TCB list

INT8U OSTCBStat; // Task state

INT8U OSTCBPrio; // Task priority (0 == highest)

INT16U OSTCBDly; // Delay ticks or timeout when waiting

BOOLEAN OSTCBPendTO; // Flag indicating PEND timed out 

OS_STK *OSTCBStkPtr; // Pointer to current top of stack

…

} OS_TCB;

INT8U OSTCBStat; // Task state

INT8U OSTCBPrio; // Task priority (0 == highest)

INT16U OSTCBDly; // Delay ticks or timeout when waiting

BOOLEAN OSTCBPendTO; // Flag indicating PEND timed out 

OS_STK *OSTCBStkPtr; // Pointer to current top of stack



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 11

Performing a Context Switch (Preconditions)

OS_TCB

Low Priority Task High Priority Task

OSTCBCur

OS_TCB

OSHighRdy

R4‘

R3‘

R2‘

R1‘

PC‘

PSW‘

Low 

Memory

High 

Memory

Low 

Memory

High 

Memory

Stack 

Growth

R4

R3

R2

R1

PC

PSW

SP

StackPtr

CPU

StackPtr



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 12

Performing a Context Switch (Saving Context)

OS_TCB

Low Priority Task High Priority Task

OSTCBCur

OS_TCB

OSHighRdy

R4‘

R3‘

R2‘

R1‘

PC‘

PSW‘

Low 

Memory

High 

Memory

R4

R3

R2

R1

PC

PSW

Low 

Memory

High 

Memory

Stack 

Growth

R4

R3

R2

R1

PC

PSW

SP

StackPtr

CPU

StackPtr



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 13

Performing a Context Switch (Restoring Context)

OS_TCB

Low Priority Task High Priority Task

OSTCBCur

OS_TCB

OSHighRdy

R4‘

R3‘

R2‘

R1‘

PC‘

PSW‘

Low 

Memory

High 

Memory

R4

R3

R2

R1

PC

PSW

Low 

Memory

High 

Memory

Stack 

Growth

R4

R3

R2

R1

PC

PSW

SP

StackPtr

CPU

StackPtr
OSTCBCur

R4‘

R3‘

R2‘

R1‘

PC‘

PSW‘



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 14

Context Switch Pseudo-Code

 Implemented as Software-Interrupt

 Calling ISR automatically pushes PSW and PC to stack

 Returning from ISR automatically pops PSW and PC from stack

 Remaining part implemented in ISR

 Platform-dependent implementation

 Usually written in assembly

PUSH R1, R2, R3, R4 onto the current stack;

OSTCBCur->OSTCBStkPtr = SP;

OSTCBCur = OSTCBHighRdy;

SP = OSTCBCur->OSTCBStkPtr;

POP R4, R3, R2, R1 from the new stack;

Execute „return from interrupt“ instruction



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 15

Determining highest priority task ready to run

 MicroC/OS-II is targeted at real-time applications

 Determining highest priority ready task has to fulfill timing requirements

 Time must not depend on the number of tasks → O(1)

How do we determine the highest priority task, which is

ready to execute?



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 16

Determining highest priority task ready to run

 Why not using a list of ready tasks sorted by priority?

→Sorting or list parsing cannot be done in O(1)

→Would not be feasible for real-time systems as execution time would depend on the number of

tasks



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 17

Determining highest priority task ready to run

 Each task ready to run is in a ready list consisting of two variables

 INT8U OSRdyGroup – Bit i is set to 1 if any bit in OSRdyTbl[i] is set to 1

 INT8U OSRdyTbl[8] – Indicates which task in the group is ready to run

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8

23 22 21 20 19 18 17 16

31 30 29 28 27 26 25 24

39 38 37 36 35 34 33 32

47 46 45 44 43 42 41 40

55 54 53 52 51 50 49 48

63 62 61 60 59 58 57 56

7 6 5 4 3 2 1 0

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

OSRdyTbl[8]
OSRdyGroup

Task Priority

Highest Priority

Lowest Priority



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 18

Making a task ready to run

 Task‘s priority is devided into 2 fields

 3bits for bit position in OSRdyGroup and index to OSRdyTbl

 3bits for bit position in OSRdyTbl[index]

OSRdyGrp |= OSMapTbl[prio >> 3]

OSRdyTbl[prio >> 3] |= OSMapTbl[prio & 0x07]

0 0 Y Y Y X X XTask Priority

Bit Position in OSRdyGroup and 

Index for OSRdyTbl[]
Bit Position in OSRdyTbl[Index]

• OSMapTbl[] is a precompiled table mapping bit position to bit mask

– e.g. OSMapTbl[2]maps to 0b00000100

• Code to make a task ready to run:



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 19

Determining highest priority task ready to run

 Finding highest priority task ready to run through another precompiled table

 OSUnMapTbl[bitmask] returns first bit that is one from a given bitmask

 e.g. OSUnMapTbl[0b00101010] contains the value 1

y = OSUnMapTbl[OSRdyGrp];

x = OSUnMapTbl[OSRdyTbl[y]];

prio = (y << 3) + x;

• Finding highest priority task ready to run

• Some architectures directly support this technique as assembler

instructions

– „Count leading zeros“ -> clz

– „Count trailing zeros“ -> ctz



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 20

OSUnMapTbl Example
INT8U  const OSUnMapTbl[256] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x00 to 0x0F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x10 to 0x1F                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x20 to 0x2F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x30 to 0x3F                           */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x40 to 0x4F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x50 to 0x5F                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x60 to 0x6F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x70 to 0x7F                           */

7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x80 to 0x8F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x90 to 0x9F                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xA0 to 0xAF                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xB0 to 0xBF                           */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xC0 to 0xCF                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xD0 to 0xDF                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xE0 to 0xEF                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0        /* 0xF0 to 0xFF                           */

};

Use OSUnMapTbl to find the lowest `1` in 36 

OSUnMapTbl[36] = 2

36 -> 0b00100100

INT8U  const OSUnMapTbl[256] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x00 to 0x0F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x10 to 0x1F                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x20 to 0x2F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x30 to 0x3F                           */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x40 to 0x4F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x50 to 0x5F                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x60 to 0x6F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x70 to 0x7F                           */

7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x80 to 0x8F                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x90 to 0x9F                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xA0 to 0xAF                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xB0 to 0xBF                           */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xC0 to 0xCF                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xD0 to 0xDF                           */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xE0 to 0xEF                           */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0        /* 0xF0 to 0xFF                           */

};



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 21

COMMUNICATION



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 22

Communication through Message Queues

 Message queues allow to

 send a message between two tasks

i.e. pass a pointer to a memory location

 manage messages in FIFO (ring buffer) and LIFO (stack buffer)

 receive messages in blocking or non-blocking way

Sending

Task

Receiving

Task



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 23

Queue Communication

 Code for message queue usage

void *QMem[NumEntries]; // memory to manage queue content

OS_EVENT MsgQ; // pointer to queue

MsgQ = OSQCreate(QMem, NumEntries); // create queue

Create Message Queue:

void *data = &messageToSend; // pointer to data to send

err = OSQPost(MsgQ, data); // post pointer in queue

Sending Task:

void *data; // pointer to data to receive

data = OSQPend(MsgQ, timeout, &err); // get pointer to message

// blocking method

data = OSQAccept(MsgQ,&err); // get pointer to message

// non blocking method

Receiving Task:



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 24

Blocking Receive from a Message Queue

 Pseudo-Code for blocking receive

void *OSQPend(pMsgQ, timeout, err){

if queue not empty

acquire pointer to message from buffer

decrement number of messages

return message pointer

else

set timeout for task in OS_TCB

register queue as waiting event in OS_TCB

call scheduler

acquire pointer to message from buffer

decrement number of messages

return message pointer

}

OSQAccept



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 25

MEMORY MANAGEMENT



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 26

Memory Management in MicroC/OS-II

 Many Microkernels do not provide dynamic memory allocation, i.e. no malloc()

 not required for many applications

 generally not real-time capable, because allocation time often depends on the history of previous

allocations

 Dynamic allocation of static memory

OS_MEM *MemPartition; // memory partition

INT8U  Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate(Memory, 100, 64);

// create memory partition with

// 100 blocks of 64 byte each

Creating a Memory Partition:

void *memBlock; // pointer to memory block

memBlock = OMemGet(MemPartition, err); // retrieve memory block

OSMemPut(MemPartition, memBlock); // return memory block

Retrieving and Returning Memory Blocks:



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 27

Memory Management Structure

OSMemAddr

OSMemFreeList

OSMemBlksize

OSMemNBlks

OSMemNFree

OS_MEM *MemPartition; // memory partition

INT8U  Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate(Memory, 100, 64);

// create memory partition with

// 100 blocks of 64 byte each

OS_MEM *MemPartition INT8U Memory[][]

0



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 28

Properties of Memory Management

 Static block size prevents fragmentation

 no defragmentation required → makes real-time implementation easier

 Management of free blocks in list

 blocks are retrieved from beginning of list

 blocks are returned to beginning of list

→O(1) allocation and deallocation

 Management of blocks within memory partition

→Reduction of overhead



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 29

EXAMPLE
Using Tasks, Queues and Memory Management



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 30

Example

Tx

Task

Rx

Task

OSMemAddr

OSMemFreeList

OSMemBlksize

OSMemNBlks

OSMemNFree

Message Memory Partition

Message Queue

OSMemGet()

write

message

OSQPost() OSQPend()

OSMemPut()



20.01.2021 | Ernst, Gemlau, Harnau, Peeck | Slide 31

Summary

What functionality does a microkernel do?

 Task Scheduling

 Interrupt Handling

 Provide Communication Primitives

 Provide Synchronization Primitives

 Memory Management

 Provide Timebase

How does scheduling in a microkernel work?

 Performing a context switch

 Determining highest priority task in O(1)

Code examples on how to use a microkernel

 Writing and starting tasks

 Creating and using message queues

 Creating and using memory partitions


