INSTITUTE OF
COMPUTER AND

NETWORK AN .
ENGINEERING N Tec.hnlsgh.e
Universitat

¥ Braunschweig

o

Laborpraktikum: Software Debugging in
eingebetteten Echtzeitsystemen

Praktikumsskript

9. Oktober 2024

Inhaltsverzeichnis

1. Einleitung
11 Motivation e
12. Lehrziel
13. Anwendungsfall L

2. Hardware und Aufbau
21, Hardware o e e e e e e e e e e

3. Grundlagenwissen
3.1. Echtzeitsysteme

N R e

w w

32. Debugging

. Coding Guidelines

41. Regeln

. Aufgabel

51, Wissen oo vt
52. Pre-Kolloquium.......................
5.3. Aufgabenstellung

. Aufgabe 2

61, Wissen
6.2. Aufgabenstellung
6.3. Post-Kolloquium

Aufgabe 3

Z1 WISSeD . . . v v v
72. Pre-Kolloquium.
73. Aufgabe o o oo
74. Post-Kolloquium

. Aufgabe 4

81 Wissen i
8.2. Pre-Kolloquium.
83. Aufgabe o o oL
84. Post-Kolloquium

. Aufgabe 5

01, WISSEIL . v v v v vt e e e e e e e e e e e e

11
11
13
14

18
18
18
20

22
22
29
30
32

33
33
35
35
39

41

INHALTSVERZEICHNIS
9.2. Aufgabe 43
10. Aufgabe 6 45
101 Tracing v v e e 45
10.2. Lauterbach-Wissen 49
103. Aufgabenteil 1. L 52
104. Aufgabenteil 2 oL oL 54
11. Aufgabe 7 56
11.1. Aufgabenteil 1. oL 56
112, Aufgabenteil 2 L 57
Akronyme 59
A. Anhang 60

Literaturverzeichnis 62

1. Einleitung

1.1. Motivation

Im Programmieralltag wird man immer wieder damit konfrontiert, dass Software nicht
einwandfrei funktioniert. Neben der Tatsache, dass es bei bei grofieren Projekten schnell
unmoglich wird den Fehler nur durch Analyse des Quellcodes zu finden, kommt es vor
allem in eingebetteten Systemen vor, dass nicht immer Fehler in der Programmiersyntax
oder -Logik vorliegen. Dabei geht es um Fehler, die nicht beim Kompilieren oder Linken
des Programms auftreten, sondern erst zur Laufzeit der Anwendung. Um ein Programm
zur Laufzeit zu debuggen gibt es mehrere Moglichkeiten. Dieses Praktikum wird Thnen
die klassischen Debug-Varianten darlegen und an Beispielen nachvollziehen lassen um
diese Fehler effizient zu finden und zu korrigieren.

Dazu werden zunichst die Grundlagen des Programmbaus vom C-Code zum Maschi-
nencode und zur Makefile behandelt, um spiter auftretende Fehler richtig einordnen und
beheben zu kénnen. AufSerdem wird ein Grundverstindnis von Betriebssystemen fiir ein-
gebettete Systeme vermittelt.

Im nichsten Teil des Praktikums werden Thnen Grundlagen des Software Debuggings
von eingebetteten Systemen dargelegt und praktisch aufdie entsprechende Probleme an-
gewandt. Dabei werden Sie lernen, welche Vor- und Nachteile die einzelnen Debugme-
thoden haben und wann es sinnvoll ist, welche Debugmethode zu verwenden. Die Arten
des Debuggings, die in diesem Praktikum behandelt werden beinhalten Printf Debug-
ging, Debugging via Programmablauf-Counter/Single-Stepping, die Nutzung von Break-
| Trace- und Watchpoints, die Nutzung direkten Speicherzugriffs zur Laufzeit des Pro-
gramms und Méglichkeiten und Anwendung des Tracing. Die Aufgaben fordern das Ver-
stindnis zur Arbeitsweise eines Betriebssystems vor allem in Bezug auf Tasks und deren
Zustinde, Scheduling und das Wissen um das Zeitverhalten in Echtzeitsystemen. Im Laufe
der Veranstaltung wird auf Inter-Core Kommunikation in Multicore-Systemen eingegan-
gen.

1.2. Lehrziel

Die Studierenden kennen am Ende des Praktikums die klassischen Varianten des Software
Debuggings von eingebetteten Systemen. Sie konnen mit Software Debugging Verfahren
wie zum Beispiel JTAG Debugging umgehen, kennen sich mit der Lauterbach Debugum-
gebung aus und wissen, welche Moglichkeiten sowie Vor- und Nachteile die jeweiligen

Debugmethoden mit sich bringen. Sie sind in der Lage Probleme zu beurteilen und die
am besten geeigneten Methoden des Debuggings auf diese anzuwenden.

1.3. Anwendungsfall

Das Praktikum vermittelt seinen Lehrinhalt an einem Anwendungsfall. Es soll die Soft-
ware fiir einen sich selbst balancierenden zweiridrigen Roboter entwickelt werden, der
nach dem Vorbild eines Segways funktioniert. Der Roboter soll selbststindig sein Gleich-
gewicht halten und seine Position iiber eine Eingabe durch Fahrbewegung verindern
konnen. Die dafiir benotigte Hardware ist bereits vorhanden und wird den Studierenden
zur Verfiigung gestellt. Dazu sollen zu den Praktikumsterminen einzelne Komponenten
entwickelt, beziehungsweise zum Teil vorgegebene Software mit Lauterbach-Debuggern
debuggt werden. Die Roboterhardware wird iiber ein Zynq-7000 Board angesteuert. Die
Teilnehmer miissen eine inertiale Messeinheit auswerten und die ausgewerteten Daten
in Echtzeit verarbeiten. Die daraus berechnete benétigte Lagekorrektur des Roboters wird
an die Motortreiber {ibermittelt. Hintergrund dieses Anwendungsfalls ist die gegebene
Nihe zum Auslesen von Sensorik, Echtzeitverarbeitung von Daten, sowie Parallelen zur
Automobilindustrie im Bereich der Multiprozessor-Datenverarbeitung im spiteren Ver-
lauf des Praktikums.

2. Hardware und Aufbau

2.1. Hardware

Der Aufbau und die Zusammenhinge der Hardwarekomponenten sind in Diagramm 2.1
dargestellt. Der Debugger Lauterbach PowerDebug Pro mit der Erweiterung PowerTrace-
IT ist ein leistungsfihiges Debugging-System. Besonderheiten sind unter anderem die
eingebauten Features zum Debugging von Echtzeitbetriebssystemen und die umfangrei-
chen Trace Funktionen. Genauere Informationen zum Lauterbach Debugger finden sich
in der Quelle [lau].

(\\e(‘acg‘ \ PC A
\
%« Sy,
&e““‘\ge@ﬂe ‘5'0/7,7.
/ #ste//e ’
Flashen + Zynq-7000 mit ARM Sensorik +

Lauterbach-Debugger Debuggen CPU Aktorik Roboter

Abbildung 2.1.: Komponenten und Zusammenhinge des Versuchsaufbaus im Praktikum

Das Xilinx ZC706 Evaluation Kit ist auf das Entwickeln mit dem SoC Zynq 7000 opti-
miert. Das SoC ist mit einem Dual Core ARM Cortex A9 Prozessor ausgestattet. AufSerdem
findet sich ein FPGA in dem System, welcher eng mit dem Hauptprozessor zusammen ar-
beitet, um etwa die Ansteuerung der GPIOs flexibler zu gestalten (siehe Abbildung 2.2).
Genauere Informationen zum Xilinx Zyng-7000 SoC ZC706 Evaluation Kit finden sich in
der Quelle [zc7, Xilinx ZC700].

Xilinx 7 Series Solution

Communication
+ Safety Module

Artix-7 FPGA MAC

Industrial MAC
Ethernet/

Fieldbus

Stacks MAC

MAC

Isolated
Safety Digital I/0
& PWM
Motion

Control Analog
Acquisition

PCle Backplane

Abbildung 2.2.: Nutzung des Programmable Logic Controllers im Zynq7000 SoC

3. Grundlagenwissen

3.1. Echtzeitsysteme

Ein Echtzeitsystem wird nicht durch seine Schnelligkeit definiert, sondern durch das Ein-
halten von Zeitschranken und damit verbundene Rechtzeitigkeit. Das Ergebnis der Berech-
nung eines Echtzeitsystems ist nur dann brauchbar, wenn es rechtzeitig vorliegt. Echt-
zeitanforderungen konnen in harte und weiche Echtzeitanforderungen unterschieden wer-
den. Entsprechend Ihrer Betitelung sind harte Anforderungen unter allen Umstinden ein-
zuhalten, da sonst das Ergebnis des Systems als nicht brauchbar gilt. Als Beispiel hierfiir
gilt die Auslosung des Airbags im Auto. Weiche Echtzeitanforderungen hingegen werden
durch die bei ihrer Verletzung verursachten Kosten definiert. Je stirker die vorgegebe-
ne Zeitschranke verletzt wird, desto héher fallen die damit verbundenen Kosten in Form
von Rechenzeit oder materiellem Verlust aus. Die Eigenschaft der Gleichzeitigkeit impli-
ziert die korrekte Verarbeitung paralleler Arbeitsabliufe. Als Beispiel kann die Regelung
der Lage des im Praktikum verwendeten Roboters gesehen werden, der Bewegungssensor-
daten und Motorsteuerung gleichzeitig bearbeiten muss. Diese Aufgaben werden in Form
von Tasks umgesetzt. Wichtig ist dabei, dass ein hoherpriorer Prozess einen niederprio-
ren Prozess verdringen kann (preemptiv), und dass das System nicht iiberlastet ist. So wird
Vorhersagbarkeit garantiert.

3.2. Debugging

Es gibt nicht nur eine bestimmte Methode des Debuggings, sondern mehrere Moglich-
keiten. Sie unterscheiden sich in ihrer Leistungsfihigkeit, dem Anwendungsgebiet, den
Kosten, den Anforderungen an die Hardware und auch in der Pinanzahl. Auflerdem gibt
es grofle Unterschiede in ihrem Einfluss auf das Zeitverhalten des Debuggee (zu debug-
gendes System). Die einfachste Moglichkeit einen Einblick in ein laufendes Programm zu
bekommen, ist die Ausgabe von Variablen zur Laufzeit iiber eine serielle Schnittstelle. Das
Printf Debugging ist simpel und reicht fiir einfache kleine Programme ohne Taskstruk-
tur und ohne strikte Anforderungen an Echtzeitfihigkeit aus. Die nichst-michtigere Me-
thode des Debuggings stellt JTAG-Debugging dar. Es ermdoglicht die Steuerung des Pro-
grammablaufs via Single-Stepping, also das kontrollierte Anhalten des Programms und
das Setzen von Halte-, Verfolgungs- und Uberwachungspunkten. Aufferdem erméglicht es
den vollstindigen Lese- und Schreibzugriff auf den Speicher des Programms. Mit diesen
Werkzeugen lassen sich einfach Fehler finden und beheben. Problematisch wird es dann,
wenn unvorhergesehene Fehler zur Laufzeit auftreten, deren Ursprung und Wirkung im
Code entweder zeitlich oder programmierhierarchisch weit auseinander liegen. Die bis-

her bekannten Debugmethoden kénnen ihre Moglichkeiten aufgrund fiir den Menschen
schwierig erkennbarer Zusammenhinge nicht ausspielen, was die Fehlersuche sehr er-
schwert. Auflerdem ist es auch hier nahezu unméglich, das Zeitverhalten des Programms
umfangreich zu analysieren. An dieser Stelle hilft es Trace-Tools als Debugmethode zu
verwenden. Zusitzlich zur Steuerung der CPU wird nun der Programmablauf teilweise
oder vollstindig aufgezeichnet. Aus diesem kann dann wahlweise auf Assemblerebene
bis hin zum Ablauf in der Hochsprache nachvollzogen werden in welcher Reihenfolge
das Programm ablief. Diese Daten helfen zu rekonstruieren wo das Programm anders
als gewiinscht ablief und ermdéglichen es den Stand des Programms vor dem Absturz zu
betrachten und damit auch eine mogliche Fehlerquelle zuriick zuschliefSen.

3.2.1. Debugging-Prozess

Um Programme zu debuggen, sollte zunichst definiert sein, was ein Fehler ist und wie
an ihn herangegangen wird. Der Begrift Fehler ist im Deutschen mehrdeutig belegt und
lisst sich mit Hilfe der englischen Begriffe differenzierter betrachten (siehe Abbildung
3.1). Ein Error ist ein nicht korrekt programmierter Code oder eine falsch implementierte
Nutzeranforderung. Dieser Error im Programmcode kann einen Fault auslosen. Es kann
sich zum Beispiel um einen Speicheriiberlauf handeln. Der Fault muss nicht nach aufien
sichtbar sein. Das extern zu beobachtende Fehlverhalten des Systems wird Failure genannt.
Ist ein Failure erkannt worden, muss die Stelle im Quellcode gefunden werden, die den
Fault auslost und den Error beschreibt. Die Ursache des Fault muss analysiert und korri-
giert werden. Sollten mehrere Fehlverhalten gleichzeitig auftreten, deren Symptome sich
iiberlagern, kann es vorkommen, dass die Betrachtung eines einzelnen nicht funktionie-
renden Programmteils alleine nicht zur Losung des Problems fiihrt. An dieser Stelle kann
viel Zeit gespart werden, indem nicht sofort versucht wird herauszufinden was nicht rich-
tig arbeitet, sondern was tiberhaupt funktioniert. Je konsequenter das Programm in mo-
dularisierter Form geschrieben wurde, desto einfacher und schneller geht dieser Schritt
vonstatten. Es ist moglich Eingabedaten in ihrer Grofe oder in ihrem Inhalt zu variieren,
um ihren Einfluss auf Fehler zu untersuchen. Es sollten Hypothesen zur Fehlerursache
aufgestellt und das Programm systematisch darauf getestet werden. Sofern es sich nicht
um triviale Fehler handelt, ist es sinnvoll, das Wissen um die Ursache des Fault festzuhal-
ten, um den Hergang des Problems sowie seine Losung zu dokumentieren.

3.2.2. Grundlagen des Debuggens eingebetteter Systeme

Debugging in der Softwareentwicklung fiir Desktopanwendungen ist wesentlich zuging-
licher und komfortabler als im Kontext der eingebetteten Systeme. So programmieren
die meisten Anwendungsentwickler auf den Systemen, auf denen die von ihnen entwi-
ckelte Software spiter auch ausgefiihrt wird. Die Steuerung des Programmablaufs, das
Betrachten von Variablen und andere Debugwerkzeuge sind ohne grofle Umwege nutz-

3.2. DEBUGGING

bar. Um eingebettete Systeme zu programmieren, kommt oft die Technik des Cross-Com-
pilings und des Cross-Debuggings zum Einsatz. Es wird also nicht auf der Zielhardware
kompiliert und debuggt, sondern auf einem Anwendungscomputer. Das zu programmie-
rende System hat eventuell nicht ausreichend leistungsfihige Hardware, um ein Anwen-
derbetriebssystem samt Entwicklungsumgebung auszufithren oder es ist schlicht nicht
gewiinscht das System zu beeinflussen. Auch die Architektur der Systeme unterscheidet
sich fiir gew6hnlich. Diese Trennung von Entwicklungsplattform und Laufzeitplattform
erschwert die Beobachtbarkeit und Steuerbarkeit eingebetteter Systeme und verkompli-
ziert somit deren Debugging. Dennoch ist die Anwendung von Debugging notwendig,
weil es unter Umstinden zu Fehlern kommt, die erst wihrend der Laufzeit des Systems
auftreten, deren Entstehung aus dem Code nicht ersichtlich ist oder das Projekt zu um-
fangreich ist.

Error \
Fault \
Failure

Abbildung 3.1.: Entwicklung eines Fehlers: Error->Fault->Failure

7

]

w

N

4, Coding Guidelines

4.1. Regeln

Im folgenden finden Sie einige Regeln wie der C-Code in diesem Praktikum formatiert
sein muss. Sauber strukturierter Quellcode trigt entscheident dazu bei, dass Fehler ent-
weder von vorneherin vermieden werden oder beim Debugging leichter eingrenzbar sind.

4.1.1. Modul- und Funktionsnamen

Ein Modul (z.B. eine C-Datei mit Funktionen die als Gruppe eine Teilfunktion erfiillen)
hat einen prignanten Namen. Dieser wird sowohl im Dateinamen verwendet, wie auch als
prifix fiir alle Funktionen und Variablen. Beispiel: Die Datei 'imu.c’ soll soll alle Funk-
tionen zum auslesen der IMU enthalten. Diese heiffen dann entsprechend 'imu_init(),
'imu_readGyro()’ usw. und nutzen globale Variablen wie 'imu_config’

4.1.2. Interne Funktionen und Variablen

Als Grundsatz gilt: Alles was nicht fiir andere Module als Interface notig ist wird mit 'static’
und einem Unterstrich als Priifix versehen. Somit ist es nur innerhalb dieser einen C-Datei
bekannt und es wird klar wie die Schnittstellen nach aufien aussehen.

[#* Dies ist eine interne variable */
static int32_t _internalTimerCount;

[*x Dies ist eine interne Funktion */
static void _imu_handleError(int err);

Quellcode 4.1: Deklaration von static Variablen und Funktionen

4.1.3. Kommentare

Jede Funktion bekommt einen Kommentar im Doxygen-Stil, der den Inhalt der Funktion
sowie ihre Parameter und Riickgabewerte beschreibt.

/***/
[

« This function initiates an interrupt-driven receive in master mode.

*

* It sets the transfer size register so the slave can send data to us.

* The rest of the work is managed by interrupt handler.

18

19

20

4.1. REGELN

*
% @param InstancePtr is a pointer to the XIicPs instance.

* @param MsgPtr is the pointer to the receive buffer.

* @param ByteCount is the number of bytes to be received.

* @param SlaveAddr is the address of the slave we are receiving from.
*

* (@return None.

*

5| % @note This receive routine is for interrupt-driven transfer only.

*
**/
void XIicPs_MasterRecv(XIicPs xInstancePtr, u8 *MsgPtr, s32 ByteCount,ul6 SlaveAddr){

N

N

W

~

S

©

22

23

24

Quellcode 4.2: Beispielhaftes Doxygen Kommentar aus der Xilinx Libary

4.1.4. Aufbau der C-Datei

” o«

Jede C-Datei hat einen klaren Aufbau der sich in die Bereiche “Includes”, “Inputs”, “Out-
puts”, “interne Variablen”, “interne Konstanten”, “interne Funktions-Prototypen” und die
eigentliche Implementierung aufteilt. So ist klar ersichtlich wo man eingreifen muss um

z.B. konstante Parameter zu verindern.

[#* Includes */
#include " ... h"

[** module input variables */
extern intl6_t accData [3];

[*+ module output variables */
int32_t pidValue=0;

[** module internal variables x/
static float _pid_errorSumAngle=0;

[** module internal constatns */
const intl6_t ACC_MINJ[3] = {-10, -20, -30};

[** internal function prototypes */
static intl16_t _pid_map(intl6_t x, int16_t in_min, int16_t in_max, int16_t out_min, intl6_t out_max);

[#* functions s/
void pid_init(void){

static intl6_t _pid_map(int16_t x, intl6_t in_min, int16_t in_max, intl6_t out_min, intl6_t out_max){

10

Quellcode 4.3: Aufbau einer C-Datei

5. Aufgabe 1

Die in dem Skript stehenden Aufgaben dienen der Anweisung was programmiert wer-
den soll. Zusitzlich zu den Programmieraufgaben halten Sie Thre Ergebnisse in dem vor-
gefertigten Dokument doku.odt fest. Dieses finden Sie im Repository, welches Sie im
Folgenden fiir alle Aufgaben verwenden. Die Dokumentation dient als Hilfestellung fiir
Sie in den Kolloquien, um die Schritte Ihrer Losung erkliren zu kénnen.

5.1. Wissen

5.1.1. Toolchain

Jedes in Hochsprache geschriebenes Programm muss in Maschinencode tibersetzt wer-
den. Die Toolchain ist eine Aneinanderreihung von Routinen zur Erstellung eines aus-
fithrbaren Programms aus dem Code einer Hochsprache wie zum Beispiel der Sprache C.
Damit der Code unserer Hochsprache auf unserem Zielsystem ausgefiihrt werden kann,
muss er zuerst in die dem Zielsystem entsprechende Maschinensprache tibersetzt wer-
den. Der Compiler unserer Toolchain tibersetzt den von uns geschriebenen Code aus der
Hochsprache in Assembler-Code. Dieser Code hingt bereits von dem verwendeten Ziel
ab. Je nach Befehlssatz des Zielarchitektur (ARM, AVR, x86, ...) sieht der Assemblercode
verschieden aus. Der vom Compiler erstellte Assembly-Code wird vom Assembler in Ma-
schinencode umgewandelt. Als Basis fiir das weitere Verstindnis zur Toolchain kann das
Dokument How a Compiler Works [RS14, Kapitel 2, S. 2] genutzt werden. In dem Diagramm
5.1 (siehe auch in Threr Dokumentation) kénnen zum Verstindnis die Arbeitsschritte der
Toolchain eingetragen werden. Nutzen Sie dafiir das zur Verfiigung gestellte .odt Doku-
ment.

5.1.2. Makefile

Das Programm Make wird verwendet, um den Buildprozess zu automatisieren. Dafiir
liest Make die Makefile aus und gibt die entsprechenden Anweisungen an die Toolchain
weiter (zb. Compiler, Linker, ...). Dies ist besonders bei grofleren Projekten hilfreich, da
der Buildprozess aus vielen Einzelanweisungen bestehen kann. Auflerdem kénnen un-
terschiedliche Build-Konfigurationen und Targets benutzt werden. Eine Erklirung von
Makefiles bietet die Website [mak]. Schauen Sie sich den Inhalt an und verinnerlichen Sie
den Sinn und die Arbeitsweise von Makefiles.

12

Dateien

Tool

Dateien

Tool

Dateien

Tool

Dateien

Abbildung 5.1.: Toolchain Diagramm zum Ausflillen und zur Vorbereitung auf das Prekolloquium

Kommentare

Variablen

: $(OBJECT) $(SRC)

(C) $(CFLAGS) T~ Dependencies

Targets

Body / Build Commands
$(RM) $(OBJ) $(TARGET)

Abbildung 5.2.: Beispiel zum Aufbau einer Makefile

5.2. Pre-KorLoQuium 13

5.1.3. Printf-Debugging
Funktionsdefinition

Eine intuitive und einfache Methode des Debuggens ist die Ausgabe von Werten oder
Nachrichten iiber eine serielle Schnittstelle. Zum Lesen solcher Nachrichten auf der Ent-
wicklungsplattform ist es meist nétig, einen Seriell-zu-USB Adapter einzusetzen. Diese
sind giinstig und weit verbreitet. Als Software dient ein serieller Monitor.

Anwendung

Mochte man die Implementierung einer Berechnung iiberpriifen, so kann dies iiber einen
Printf-Befehl getan werden, der das Ergebnis ausgibt. Auch eignet sich diese Debugging-
Methode gut als Indikator, ob bestimmte Stellen im Programmcode erreicht werden. Be-
sonders hilfreich ist diese Methode zum Uberpriifen von Variablenwerten in Schleifen-
durchliufen. Auf die gleiche Art und Weise kénnen falsche Ubergabe- oder Riickgabepa-
rameter erkannt werden.

Grenzen

Der Rahmen in dem Printf-Debugging zum Erfolg fiihrt, ist stark begrenzt. Es bietet kei-
nerlei Hilfe bei Problemen, die mit Speicherallozierung oder Interrupts zu tun haben.
Printf nutzt die langsame serielle Schnittelle und verindert das Zeitverhalten des Pro-
grammes stark. Das kann dazu fithren, dass sich Fehler in einem auf Echtzeitfihigkeit
ausgelegten System anders verhalten, wenn eine Printf-~Anweisung in den Code eingefiigt
wurde. Es ist dadurch nicht moglich zeitkritische Anwendungen zu debuggen. Als Beispiel
dafiir gilt die Kommunikation tiber Bussysteme. Dazu kommt der Aufwand und die Dau-
er des wiederkehrenden Build-Prozesses, da nach dem Verschieben der Printf-Anweisung
an eine andere Stelle im Programm, das Programm erneut kompiliert werden muss. Vor
allem bei grofSen Projekten bedeutet dies lange Wartezeiten und ist nicht praktikabel.

5.2. Pre-Kolloquium

Fiir das Kolloquium sollte klar sein, wie die Toolchain funktioniert und welche Werkzeu-
ge in den Programmbau involviert sind. Als Visualisierung sollen Sie das Diagramm zur
Toolchain ausfiillen. Machen Sie sich mit den einzelnen Schritten vertraut. Die Regeln,
nach denen das Programm gebaut wird, finden sich in dem Makefile. Sie sollten erkliren
konnen welche Teile im Makefile welche Funktion erfiillen. In der folgenden Aufgabe
werden Sie unterschiedliche Fehler im Code aber auch im gegebenen Makefile finden
miissen. Die Fehler im Makefile sollten Sie durch genaue Analyse des Makefiles bereits
zum Teil finden kénnen. Die Datei toolchain.odt enhilt das Diagramm aus dem Skript,

14

-

welches den exemplarischen Ablauf einer Toolchain zeigt. Fiillen Sie die Liicken der Da-
teien und Tools und erkliren Sie was in welchem Schritt passiert. Machen Sie sich zudem
mit den Linux Befehlen find und grep vertraut.

5.3. Aufgabenstellung

5.3.1. Toolchain

Die erste Aufgabe formt den Einstieg in die Programmierung des Praktikumsboards. Es
wird sich mit der Ordnerstruktur und der Entwicklungsumgebung vertraut gemacht und
die Struktur des Gits verstanden. Es soll das erste Programm gebaut und geflasht sowie der
Umgang mit Makefiles geilibt werden. Auflerdem soll die Funktionsweise der Toolchain
verinnerlicht werden.

Erstellen Sie zunichst einen Fork des Repository von

https://git.ida.ing.tu-bs.de/IDA_Lehre/sdes_student

Dazu clonen Sie zunichst Thren Fork mit dem angezeigten Link aus dem Webinterface in
Ihren lokalen Ordner.

Zusitzlich sollten Sie einen neuen Branch in folgender Form anlegen:

git checkout -b praktikum

Es kommt vor, dass der Betreuer im Praktikumsverlauf Anderungen am Master vorneh-
men muss, dies fithrt hiufig zu Konflikten. Durch den Branch werden diese vermieden.

Sie arbeiten in ihrem Fork auf dem angelegten Branch.

In dem bereitgestellten git Repository finden sich alle fiir die Aufgabe bené&tigten Datei-
en. In dem Ordner src/APP befinden sich der Quellcode der Aufgaben des Praktikums.
Der Ordner src/APP/Aufgabel/ps7/core®/ enthilt den Quellcode der Aufgabe 1 fiir
den die Architektur ps7 und den Kern 0. In ihm finden sich weitere Unterordner. In
Aufgabel/ps7/core®/src findet man alle . c-Dateien aufler der main. c.

Nach dem Klonen des Gits ist die Entwicklungsumgebung einzurichten:
» Terminal in Verzeichnis der Wahl (aufler innerhalb des Repository) 6ffnen

» Fine Integrated Development Environment (IDE) bzw. Texteditor Threr Wahl starten
(z.B. VSCode)

m Neuen Workspaceordner erstellen und Ordner auswihlen

m sdes_student als Projektnamen wihlen

5.3. AUFGABENSTELLUNG 15

m Falls gewiinscht, kann das Makefile-Projekt eingerichtet werden, um den Buildpro-
zess aus der IDE heraus zu starten

Ihre Aufgabe ist es, das Programm zu kompilieren und in die Laufzeitumgebung zu
laden. Dabei auftretende Fehler sind zu beheben und der Arbeitsvorgang zu dokumentie-
ren. Zunichst ist es sinnvoll sich den Programmcode der Datei main.c anzusehen und zu
verstehen. Um das Programm zu kompilieren gehen sie in den Repositoryordner, 6ffnen
ein Terminal und fithren den Befehl make aus. Es ist n6tig dem Programm make mitzu-
teilen, fiir welche Aufgabe und Architektur das Programm kompiliert werden soll. Die
Syntax des Aufrufs ist folgende:

make ARCH=ps7 APP=Aufgabel CORE=0

Falls Fehler auftreten, analysieren Sie diese und versuchen Sie ihre Griinde heraus-
zufinden. Es lohnt sich die Ausgabe genauer anzusehen und mit dem Wissen iiber die
Toolchain und Makefile zu verkniipfen. So kann der Ursprung des Fehlers schnell einge-
grenzt werden. Nutzen sie die Ausgabe des Kompiliervorgangs und lsen Sie die auftre-
tenden Fehler, um den Build-Prozess zu erméglichen.

Tipp: Alle von der Toolchain bendtigten Abhingigkeiten finden sich in dem Ordner
Aufgabel/ps7/core®/build. Suchen Sie auch in dem Makefile nach Fehlern und achten
Sie auf Grof3- und Kleinschreibung!

Der Ordner Aufgabel/ps7/core®/cfg enthilt die Header-Dateien und der Ordner
linker das Linkerscript.

Wichtigistauflerdem der Aufgabel/ps7/core®/build Ordner. In den Dateien config.mk,
includes.mk und sources.mk festgelegt, welche Pfade beim Build-Prozess tiberhaupt
berticksichtigt und welche Compilerflags gesetzt werden. Neue Dateien in bisher nicht
inkludierten Pfaden miissen in den entsprechenden Dateien eingetragen werden. In dem
Ordner out finden sich geordnet nach den Aufgaben, Architektur und Core die entspre-
chenden Zielpfade fiir die aus dem Build-Prozess entstehenden Objekt-Dateien.

Immer wenn eine neue Terminal-Session gestartet wird miissen zunichst einige Um-
gebungsvariablen gesetzt werden, damit die benétigten Tools gefunden werden. Dazu
dienen hier die “setup-lm” Befehle, die die PATH-Variable um die gewiinschten Tool-
Verzeichnisse erweitern und bei Bedarf Lizenzserver zu setzen.

setup-lm lauterbach r_2020_09
)| setup-Im gcc gec-arm-none-eabi-7-2018-q2

Der Ordner Debug/ps7 im Oberverzeichnis enthilt das Skript "start_amp_session.sh",
welches die Debug-Umgebung lidt. Zur Anwendung des Skripts wird ein Terminal in dem
Ordner ps7 ge6ffnet und der Befehl

16

1 ‘ . start_amp_session.sh lauterbach[Lauterbachnummer]

ausgefiihrt. Die [Lauterbachnummer] muss angepasst werden und entspricht der Grup-
pennummer.

Achtung: Es kommt vor, dass die vorherige Lauterbach-Session auf dem Debugger nicht
ordnungsgemifd beendet wurde oder der Lauterbach von einem anderen Nutzer belegt
war. Dann wirft der Befehl zunichst den Fehler: Selected device already in use by... Dann bit-
te einmal priifen ob wirklich der richtige Lauterbach angesprochen ist und nicht der einer
anderen Gruppe. Ein erneutes Ausfithren dauert linger, sollte dann aber erfolgreich sein.

Nach dem erfolgreichen Kompilieren muss das Programm auf das Board geflasht wer-
den. Dafiir starten wir die Lauterbach Software "Trace 32” wie oben beschrieben. Fiir jede
Aufgabe gibt es im Ordner Debug/ps7/ einen entsprechenden Unterordner, welcher ein
Lauterbach-Skript enthilt. Diese kann iiber die Befehlszeile in Trace32 ausgefiihrt wer-
den:

do Aufgabel/zc706_onchip_trace.cmm

Generell arbeitet Trace32 vollstindig skript-basiert und jedes GUI Kommando kann auch
in einem Skript eingesetzt werden. Dies konnen Sie sich fiir spitere Aufgaben merken um
wiederkehrende Befehle zu automatisieren.

Das zu Aufgabe 1 gehorige Skript sorgt dafiir, dass das Board durch die Software geflasht
wird, sich aber keine weiteren Fenster in der Software 6ftnen. Ziel dieser Aufgabe ist das
Debuggen iiber printf. Nachdem Sie das den Befehl zum Flashen im richtigen Verzeichnis
ausgefiihrt haben, sollte sich ein Fenster dhnlich der Abbildung 5.3 6ffhen. Das Programm
wird nun durch einen Klick auf “Go” gestartet. Sie kénnen dieses Fenster nun ignorieren
und in einer freien Konsole die Verbindung zur Ausgabe des Boards aufbauen:

telnet ida-ser2net 800X

Der Port hingt von Ihrer Gruppennummer und dem verwendeten Lauterbach ab. Erset-
zen Sie das 'X’ durch die Nummer ihres Lauterbach-Debuggers. Das Board sollte Thnen
jetzt jede Sekunde ein “I'LL BE BACK” ausgeben.

Bei Uberpriifung der Arbeitsergebnisse sollten Sie auftretende Fehler dem Linker oder
dem Compiler zuordnen kénnen.

5.3. AUFGABENSTELLUNG 17

/A ARM_AMP_COREO TRACE32
Fle Edit View Var Break Run CPU Misc Irace Probe Perf Cov ZYNQ7000 uC/OS Window Help

[k a s ve »u = 20 g sum ves 8 1L

Bis| ==
T T A | T | T T | R | T o | R | | |
[ZST:00100D9C \\robot_ps7_core0\mainymain [{other) |stopped at breakpoint | | | | [HLL [up

Abbildung 5.3.: Lauterbachumgebung zum Flashen des Boards in Aufgabe 1

6. Aufgabe 2

6.1. Wissen

6.1.1. Tasks

Ein Task ist fiir gew6hnlich eine Endlosschleife einer Funktion, die von dem Scheduler
der CPU zugeteilt wird. Es konnen mehrere Tasks gleichzeitig laufen, die dann entspre-
chend ihrer Prioritit CPU-Zeit zugeteilt bekommen. In pC/OS-II wird ein Task mit der
Methode

INT8U OSTaskCreate (void (xtask)(void *pd), void spdata, OS_STK sptos, INT8U prio)

erstellt. Der Task benotigt eine Prioritit, die gleichzeitig auch seine Identifikation dar-
stellt. Kleinere Zahlen bedeuten eine héhere Prioritit. Mit dem Funktionsaufrufvon

UCOSStartup (CPU_FNCT_PTR initial_func)

wird unter anderem der Scheduler und somit das Multitasking gestartet. Ein Task be-
notigt seinen eigenen Stack mit der entsprechenden Stack-Grofle. Dieser sollte statisch
alloziert werden.

Empfohlene Literatur:
m uC/OS-II Micrium Documentation|mic, pC/OS-II Quick Reference]

m Micrium: Inter Process Communication via Message Queues [wik, Message Queues Quick
Start Guide, S. 9]

m Technical Reference Manual : Zyng-7000 ZC-706 im Repository Ordner

6.2. Aufgabenstellung

6.2.1. Teil 1l

Das in der ersten Aufgabe programmierte Programm soll nun als Task ausgefiihrt wer-
den. Zusitzlich sollen in einem weiteren Task Fibonaccizahlen berechnet und ausgegeben
werden.

m Das Programm weist zahlreiche Fehler auf, die es zu debuggen gilt

6.2. AUFGABENSTELLUNG 19

_AMP_COREO TRACE32 AR
Trace Probe Perf Cov ZYNQ7000 uC/OS Window Help
X2 o = ow o & & & Display Tasks
Display Events
Display Flags
Go Il Break % Mode & t. "3 Fin _cpu_a_vfp

Display Timers

Display Memory Partitions
Errrerreer e ey Stack Coverage ’

n

@ Set IRQ & FIQ bits in CPSR to DISABLE all interr

Abbildung 6.1.: Menii zum Inspizieren von Betriebssystemfunktionen

TASK.Task
{magic id |prio |state event lmsg delay |name
00127734 2. | 30. |QUEUE 0012742C |0OOOOOOO 0. |Te2
1001276DC 1. | 31. |QUEUE 00127414 |000OOOOO 0. |TO1l
i|e0127684 0. | 32. |[QUEUE 001273FC |0000000O 0. |[TeO l
0P01275D4 (65534. | 62. [DELAY 00000000 |0OOOOEOO 187. |uCc/0S-II sStat
P012757C |65535. | 63. [RUNNING (00000000 |00000000 0. |uc/0S-II Idle

Abbildung 6.2.: Fenster zum Inspizieren der Stackausnutzung

m FEine sinnvolle Hilfe stellt die UCOS-2 Dokumentation zu dem Thema Task Mana-
gement dar (siehe oben: "Empfohlene Literatur”)

m Tipp: Die UART Schnittstelle ist fehlerhaft konfiguriert, die gewiinschte Frequnz
sollte auf’50000000 eingestellt sein, die erste der beiden UART Instanzen ausgewdhlt
sein. (siehe TRM Zyngq 7000)

Dokumentieren Sie die gefundenen Fehler.

Die Lauterbach Umgebung bietet mehrere Moglichkeiten das Multitasking in UCOS
zu iiberwachen (siehe Abbildung 6.1):

» Uberwachung der Tasks und ihrer Priorititen (Beispiel siehe Abbildung 6.2)

» Uberwachung von Stackgréflen, auch die der Tasks (Beispiel siehe Abbildung 6.3
Diese Uberwachung basiert auf der Uberpriifung auf Nullen im Stack.

7 B::TASK.STacK [=)lm)[x]
name |low high sp % [lowest spare max 0 10 20 30 40 50
TO2 [00114880 00114C80 [00114B90 23% [00114B84 00000304 24% (s
TO1 |00114480 00114880 23% (00114758 000OO2D8 28%
TOO |00114080 00114480 (00 © 23% (00114384 00000304 24%
uc/0s-II stat |0e126ED4 001270D4 (00 8 27% |0012703C 00000168 29%
uc/0S-II Idle |0012719C 0012739C (00127380 5% (00127334 00000198 20%

Abbildung 6.3.: Fenster zum Inspizieren von laufenden Tasks, ihren Priorititen und IDs

6.2.2. Teil 2

Es sollen zwei Tasks erstellt werden, die {iber eine Message Queue miteinander verbunden
sind.

m Erstellen Sie zwei Tasks
m Task 2 soll auf eine Nachricht von Task 1 mit einer Ausgabe iiber printfreagieren
= Nutzen Sie eine Message Queue um Task 2 zu informieren

Es gilt zu dokumentieren, was zu einem Task gehort, wie ein Task erstellt wird und wie
entschieden werden kann, welcher Task von dem Betriebssystem als nichstes ausgefiihrt
wird.

6.3. Post-Kolloquium

m Welche Bedeutung hat UCOSStartup() ?

(Tipp: Suchen Sie in Eclipse nach der Funktion (Strg+H) und machen Sie sich mit
dem Inhalt vertraut. Ist der Aufruf dieser Funktion fiir die korrekte Funktion des
Programms notwendig?)

m Wie ist der Task Control Block aufgebaut? (Siehe Abbildung 6.1)

m Was ist eine Message Queue und warum wird sie genutzt?

= Welche Vorteile hat eine Message Queue?

» Uber welche Parameter wird die UART Schnittstelle konfiguriert?

m In Aufgabe 1 haben Sie sich eingehend mit der Toolchain beschiftigt. Schauen sie
sich nun einmal die Dateien out/Aufgabe2_ps7_core0.1st und out/Aufgabe2_ps7_core®.map
an. Was steht in diesen Dateien und welche Informationen kénnten Sie hier heraus
ziehen?

19

20

21

22

6.3. PosT-KOoLLOQUIUM

21

typedef struct os_tcb {
OS_STK *OSTCBStkPtr;
void *OSTCBExtPtr;

OS_STK *OSTCBStkBottom;

INT32U OSTCBStkSize;
INT16U OSTCBOpt;
INT16U OSTCBId;

struct os_tcb *OSTCBNext;
struct os_tcb *OSTCBPrev;

OS_FLAGS OSTCBFlagsRdy;

INT8U OSTCBStat;
INT8U OSTCBPrio;
} OS_TCB;

Quellcode 6.1: Ausschnitt aus dem Task Control Blocks in pC/OS-II

7. Aufgabe 3

7.1. Wissen

7.1.1. JTAG-Debugging
Funktionsdefinition

Der Joint Test Action Group (JTAG)-Debugger erméglicht es, Eingriffe in den Program-
mablauf vorzunehmen. Aufferdem unterstiitzt er den Entwickler dabei, den Programm-
zustand zu inspizieren. Dazu lisst sich der Speicher auslesen und die daraus gewonnenen
Informationen werden ausgewertet und zu Analysezwecken aufbereitet. Plattformen, die
Multitasking unterstiitzen, bieten Ubersichten zu laufenden Tasks. Damit wird das Uber-
wachen der Nebenliufigkeit vereinfacht. Fortgeschrittene Debuggerprogramme bieten
die Moglichkeit die Interprozesskommunikation, zum Beispiel Semaphoren und Nach-
richten, auszuwerten. Der Standard in dem Bereich des Debuggings fiir eingebettete Sys-
teme ist der GNU-Debugger (GDB), welcher Teil der GNU Compiler Collection (GCC)
ist. Das JTAG-Interface hat den Zweck ein Verfahren zu ermoglichen, mit dem Schal-
tungen getestet werden konnen, wihrend sie sich verlotet auf der Leiterplatte befinden
[jta]. JTTAG-kompatible Systeme haben im Normalbetrieb abgetrennte Komponenten, die
erst dann aktiviert werden, wenn das JTAG-Interface genutzt werden soll. Technisch ge-
sehen ist die Schnittstelle als Schieberegister verwirklicht. Das Zielsystem ist iiber das
JTAG-Interface mit der Debugginghardware verbunden. Die Kommunikation zwischen
der Entwicklungsplattform auf dem PC und der Debuggingplattform findet {iber USB
statt (Abbildung 7.1).

Quelltextansicht

Im Gegensatz zu Assembler-Debugging kann der Code via High Level Language (HLL)-
Debugging in der Quelltextansicht inspiziert werden (siehe Abbildung 7.2). Der Program-
mablaufzihler wird eingeblendet und es lisst sich nachvollziehen, an welcher Stelle im
Quelltext sich das Programm gerade befindet. Diese Moglichkeiten bieten sich, weil der
Compiler beim Erzeugen der Executable and Linking Format (elf)-Datei Debuginforma-
tionen hinzufiigt. Diese werden von dem Debugwerkzeug interpretiert und die Assembler-
Instruktionen werden den Zeilen im Quelltext zugeordnet.

Bl

7.1. WISSEN

Debug Umgebung

USB

Debug-hﬁrdware

Debugger Modul

JTAG-Interface

N\
Zielsystem

JTAG Kompatibilitat

Abbildung 7.1.: Cross Debugging via Joint Test Action Group (JTAG)-Debugging

[B::List.auto]

(=lElx

Ml Step B Over M Diverge ¢ Return ¢ Up B Go Il Break ¥ Mode & +t. "3 Find:

addr/line |source

main.c

#include =
#include =s
#include "
=include ™
#include ™
#include ™
#include "xil_printf.h"

9 [void InitpDonecallback(woid * p_arg){
(woid) p_arg;

while(1){
* 1z 05TimeDly(0S_TICKS_PER_SEC * 5);
13 UCOS_Print("I'LL BE BACK!I\rin");
1
1

17 |[int main{woid) {
18 MMUInit();

19 ucosstartup(Initponecallback);
//this should never been reached

21 while (1);

22 |}

Abbildung 7.2.: Quelltextansicht in der Lauterbach Umgebung

23

24

(Single-)Stepping

Das Programm kann in Einzelschritten ausgefithrt werden. Dabei konnen entweder die
Schritte der Hochsprache oder der Assembler-Ebene einzeln ausgefiihrt werden. AufSer-
dem ist es moglich, die aktuelle Methode zu Ende laufen zu lassen oder in die auszu-
fiihrende Unterroutine hineinzuspringen, beziehungsweise erst bei deren Riickkehr zu
stoppen. Diese Moglichkeiten ergeben sich, wie auch die Quelltextansicht, aus den vom
Compiler der elf-Datei hinzugefiigten Debuginformationen.

Starten und Stoppen des Programmablaufs

Das Programm kann angehalten werden. Dies kann hilfreich sein, wenn man an bestimm-
ten Stellen im Programm Variablen auslesen mochte. Das manuelle Stoppen des Pro-
grammflusses ist allerdings sehr ungenau. Daher sollten fiir das gezielte Anhalten des
Programms Breakpoints genutzt werden.

Haltepunkt (Breakpoint)

Das Setzen eines Breakpoints beschreibt die Auswahl einer Stelle im Programmfluss, an
der die Ausfithrung des Programms gestoppt wird, bevor der markierte Befehl ausgefiihrt
wird. Aus [Gra, S. 115], Vorgehen beim Debuggen mit Breakpoints:

= Aufstellen einer These iiber die mogliche Position des Defekts
m Setzen eines Haltepunkts vor der vermuteten Position

» Anniherung mit Hilfe von Breakpoints / Stepping, dabei: Uberpriifung des Pro-
grammzustands

m These falsch / Korrigieren des Defekts

Es wird zwischen Software und Hardware Breakpoints unterschieden [arm]. Erstere wer-
den temporir in den RAM des Zielsystems geschrieben und ersetzen bis zum Eintritt des
Breakpoints die urspriingliche Instruktion. Diese wird durch eine Breakpoint-Instruktion
iiberschrieben und die CPU geht bei der Ausfithrung in einen Debugstatus. Hardware
Breakpoints werden durch das Uberpriifen des Instruction Fetch von einer spezifischen
Speicheradresse aus umgesetzt (siehe Abbildung 7.5). Im Gegensatz zu Software Break-
points kénnen Hardware Breakpoints auch auf Befehle aus dem ROM angewendet wer-
den. Sollte eine Memory Management Unit (MMU) Adressbereiche neu zuordnen, so kann
es zum Uberschreiben von Software Breakpoints kommen.

Das Setzen eines Breakpoints erfolgt iiber einen Doppelklick neben die Programmazeile
(siehe Abbildung 7.3).

7.1. WISSEN 25

25 (void InitDonecallback(veid * p_arg) {
(wvoid) p_arg;

27 ucos_Print("0S started!“r\n");
28] GT_Init();
31 7

Abbildung 7.3.: Setzen eines Breakpoints in Zeile 28.

B:zBreak.List

2% Delete All O Disable All @ Enable All @ Init & Impl 52 Store 2 Load »

address types impl
ZT:881880%8 (|Program ONCHIP Initponecallback\z
Z:881853E2--801854E7 |[MemoryRead D (ONCHIP 05IntExit | OSRunning

Abbildung 74.: Breakpoint-Ubersichtsfenster in der Lauterbach Umgebung

Uberwachungspunkt (Watchpoint)

Ein Watchpoint {iberwacht eine gewiinschte Variable und hilt die Ausfithrung des Pro-
gramms an, wenn diese verindert werden. Die Moglichkeiten der Uberwachung hiingen
von dem genutzten Debugprogramm ab. Méglich ist zum Beispiel die Uberpriifung auf
einen Wertebereich oder auf Lese/Schreibzugriffe aufeine Variable. Nicht tiberwachen las-
sen sich alle Datenstrome, die an der CPU vorbei laufen. Sollten Speicherbereiche zum
Beispiel durch Direct Memory Access (DMA) verindert werden, so kann dies nicht mit
Watchpoints an der CPU detektiert werden. Die gesetzten Break- und Watchpoints er-
scheinen im Ubersichtsfenster, wo auch ihr Typ niher spezifiert ist.

Breakpoint Unit

Compare instruction
CPU <«—— address with — RAM / ROM

breakpoint address

Abbildung 7.5.: Hardware Breakpoint Realisierung

26

B::War-Watch %Hex %Decimal

- H gk Watch | gt View e
= InstancePtr = Ox08115D8E — |

@ config = (DeviceId = 1 £ @x1, BaseAddress = 3758116864 < OxEODO5808, Input
= IsReady = 286331153 E Bx11111111,
= options = 2 £ exz,
SendBufferPtr = B8x001147FD,
RecvBufferPtr = BxE0115D75,
= SendByteCount = @ £ 0x0,

RecvByteCount = 5 £ @xs,

currByteCount = 8 £ ox@,

UpdateTxSize = & £ ox8,

IsSend = 0 £ 0x0,

IsRepeatedstart = @ £ oxe,
StatusHandler = ©x80102D4F,
callBackRef = oxB)

+ 0SPrioCur = 31 2 gxiF

Abbildung 7.6.: Watch-Fenster Breakpoint Realisierung

Speicherzugriff

Der Speicherzugrift ermoglicht das Auslesen des Speichers. Die Daten kénnen in ver-
schiedenen Formatierungen angezeigt werden. Es ist moglich den Inhalt direkt als ASCII
String, hexadezimal, dezimal und binir darzustellen.

Watch Fenster

Mit Hilfe der Debuginformationen aus der elf-Datei konnen die, aus dem Speicher gele-
senen, Daten im Watch Fenster geordnet und entsprechend der zugehorigen Datenstruk-
turen dargestellt werden (siehe Abbildung 7.6). Es ist moglich, sich die Daten in Arrayform
oder in anderen Formatierungen anzeigen zu lassen. Konstanten werden von dem Debug-
ger nicht aufgeldst.

Auswertung des Call Stacks

Die im Call Stack enthaltenen Daten lassen sich auswerten und eine Aufrufliste daraus
rekonstruieren (siehe Abbildung 7.7). Auflerdem werden beim Verlassen einer Unterrou-
tine die lokalen Variablen auf'den Call Stack gelegt und lassen sich von vielen Debuggern
auswerten.

7.1. WISSEN

= B:zFrame /Locals (locked) = =]
C

t. Up "3 Down [# Args [+ Locals || calle

-0ee||XIicPs_MasterRecvPolled(

InstancePtr = @x08115DB8E,
MsgPtr = @x80115D6C,

= ByteCount = 14,

= SlaveAddr = 104)
Intrstatusreg = @

Intrs = 676

StatusReg = 256

Baseaddr = 37581168564

= Result = -536850432
= IsHold = @

= UpdateTxsSize = @

= ByteCountvar = 8

Platform = 4
-881||mpus256_Read_Datal

= iic_address = 59,

= length = 14,

[# RecvBufTer = Bx0011SDEC)
= Status = 8
[H sendBuffer = (59)
-982 mpu92s5e_Get_pata_Task(

[pdata = ©x0)
= status = @
-003 |GT_ExtTaskLoop(

pMyOwnTask = @x@018DESC)
* cpu_sr = 1618612755

Abbildung 7.7.: Watch-Fenster Breakpoint Realisierung

7.1.2. Beispiel: Schreiboperation auf Variablen iiberpriifen

Wenn es zu nicht nachvollziehbaren Anderungen von Variablen kommt ist, ist es sinnvoll
diese mit Watchpoints zu {iberwachen. Es ist moglich, dass die Variable durch einen feh-
lerhaften Schreibvorgang einer anderen Variable beeinflusst wird. Ein Beispiel, wie es zu
solch einer Situation kommen kann, ist in dem Quellcode 7.1 zu betrachten. Die Tabelle
7.1 zeigt, dass der in der globalen Variable a gespeicherte Wert durch die Schreiboperation
auf numbers[4]iiberschrieben wurde. Das Ergebnis der Addition in Zeile 25 des Quellcodes
7.1 ist somit falsch.

27

28

w

[
«x zur Veranschaulichung:
x+ alle Variablen global und im gleichen Speichersegment

*f

uint8_t numbers[4];
uint8_t a = 10;
uint8_t b = 15;

uint8_t result;
void main (void) {

[*
+x for-Schleife mit Fehler in Abbruchbedingung
** Schreiboperation auf numbers[4]
x% —> fehlerhafte Daten in Speicherbereich der Variable a
f
for(uint8_t i = 0; i <= 4; i++){
numbers[i] = i;

}

[* falsches Ergebnis durch fehlerhafte Daten in Variable a x*/
result = a + b;

}

Quellcode 7.1: Beispielcode zum Uberschreiben von Speicherbereichen und dadurch entstehende
Folgefehler

Speicherbereich fiir globale Variablen

Byteweise

adressiert 0 1 2 3 4 5 6
Inhalt - soll 0 1 2 3 10 15 25
Zugeordnete

Variable numbers[4] a b result

Tabelle 71.: Visualisierung des Speicherinhalts bei Ausfiihrung des Programms 7.1

7.2. PrRE-KoLLOQUIUM 29

7.1.3. Grenzen des JTAG-Debuggings

JTAG-Debugging eignet sich nur dann, wenn das System zur Erfassung des Fehlers auch
pausiert werden kann. Sobald eine Analyse des Systems ausgefiihrt wird, wird das Zeitver-
halten stark verindert, weil das System angehalten werden muss. Fehler, die auf Zeitver-
halten beruhen, lassen sich damit nur schwer untersuchen. Dazu gehdren auch Interrupts
oder Unterbrechungen durch héherpriore Tasks. Es ist auflerdem nicht méglich, im Pro-
grammablaufzuriick zu gehen und sich den Hergang des Fehlers genau anzusehen. Dafiir
bedarf'es der Aufzeichnung des Programmflusses.

7.1.4. Schrittmotoren

Schrittmotoren kénnen schrittweise und somit sehr genau gesteuert werden. In unserem
Anwendungsfall ist die schrittweise Ansteuerung allerdings nicht wichtig. Es ist inter-
essant, in welcher Frequenz die Schritte ausgel6st werden, denn damit wird die Geschwin-
digkeit des Motors geregelt. Um die Schrittmotoren einfacher ansteuern zu kénnen, wer-
den Schrittmotortreiber genutzt. Das Datenblatt zu dem Treiber A4988 findet sich dabei
in der Quelle [All]. Fiir jeden Schritt, den der Motor machen soll, muss ein Puls an den
Eingang des Schrittmotortreibers gesendet werden. Schauen Sie sich im Datenblatt zu
dem Zynq-7000 [Xil18] das Kapitel zu dem Thema Triple Timer Counter an. Hier finden sich
Informationen, wie man diese Pulse erstellen kénnte, ohne dass man sich in der Software
um das Zihlen direkt kiimmern miisste. Die Drehrichtung wird von einem Signal iiber
GPIOs gesetzt.

7.2. Pre-Kolloquium

Versuche Sie herauszufinden, wie man die Motoren mit Hilfe der Timer mit verschie-
denen Geschwindigkeiten ansteuert. Halten Sie Thre Ergebnisse zunichst schriftlich fest.
Anregungen:

m Welche Vorteile bieten Timer gegeniiber dem Zihlen in Software?

m Istes moglich Signale auf GPIOs zu geben, wie kann davon Nutzen gemacht werden?
Konnen diese Signale auch von Timern erzeugt werden?

m Schauen Sie sich die verschiedenen Zihlmodi (Interval Mode, Overflow Mode) an: Wann
startet der Timer wieder bei 0?

» Finden Sie die Bedeutung von Match Value und Interval Length heraus
m Wie lang muss der Puls sein? Schauen Sie sich das Datenblatt des Motortreibers an.

m Wie konnen Sie in der Lauterbach Skriptsprache Breakpoints generieren, laden und
speichern?

30

m Wie hoch ist die Clockfrequenz des Timers? Was wire ein passender Prescaler um
c.a. 1ps pro Timer-Tick zu generieren?

® Was macht die Funktion XTtcPs_CalcIntervalFromFreq? Ist es sinnvoll diese Funk-
tion hier anzuwenden?

7.3. Aufgabe

Schreiben Sie die Software fiir das Ansteuern der Motortreiber. Es soll auf einen PID Wert
zwischen -1000 und 1000 reagiert werden und die Motorleistung, sowie Drehrichtung ent-
sprechend geregelt werden. Die Motoren drehen bis zu einer Pulsfrequenz von c.a. 10kHz
fliissig. Als Mindestfrequenz sollten c.a. 1kHz gesetzt werden.

m Configs:

= Ein Timer Tick entspricht c.a Mikrosekunde

= Nutzen Sie die Timer TTCO_0 und TTCO_1

= Die GPIO-Pinnummern fiir die Richtungseinstellung sind 54 und 55
» Simulieren Sie einen PID-Regler indem:

= Sie einen globale Variable pidValue in main.c anlegen

= Sie In der Methode InitDoneCallback eine Schleife erstellen, die die globale Va-
riable in threm Wertebereich hoch zihlt.

» Tipp: Denken Sie daran, dass Sie die Variable nicht unendlich schnell hoch
zihlen.

m Initialisieren Sie einen Timer in der tic_timer.c:

= Erstellen Sie dafiir eine init-Methode

Timer Instanz erstellen (global)

1| XTtcPs (...)

Erstellen Sie eine Konfigurationsinstanz fiir den Timer

XTtcPs_Config (...)

Die Konfigurationsinstanz des Timers fiillen dazu die folgende Methode nut-
zen

XTtcPs_LookupConfig(XPAR_PS7_TTC_0_DEVICE_ID);

7.3. AUFGABE 31

s Den Timer initialisieren

XTtcPs_Cfglnitialize (...)

» Modus des Timers setzen (Tipp: Welcher Timermodus soll gewihlt werden?
Wann soll ein HIGH/LOW am Ausgang erzeugt werden? Welche Option wird
benétigt, um den Match Value zu nutzen?)

[
I ‘ XTtcPs_SetOptions(...) ; ‘

Prescaler setzen

XTtcPs_SetPrescaler (...)

Match Value erstellen und setzen

XTtcPs_SetMatchValue(...)

Intervalllinge erstellen und setzen

1 ‘ XTtcPs_SetInterval (...) ‘
L

m Schreiben Sie Methoden zum Starten und Stoppen der soeben erstellten Timer
(Hinweise finden sich in der Datei xttcps.h)

m GPIO Initialisierung fiir das Festlegen der Drehrichtung des Motors

= Erstellen Sie eine Konfigurationsinstanz fiir GPIOs

1 ‘ XGpioPs_Config (...)
L

s Erstellen Sie eine GPIO Instanz

XGpioPs (...)

» Implementieren Sie die Funktion

1 i timer_gpio_Init() ‘
L

» Fiillen Sie die Konfigurationsinstanz (ihnlich wie bei der Erstellung des Ti-
mers)

» Initialisieren Sie die GPIO-Instanz (Tipp: XPAR_PS7_GPIO_0_DEVICE_ID)

32

» Definieren Sie die Richtung der Pins mit

XGpioPs_SetDirectionPin(gpiolnstanz, Pinnummer, 1);
XGpioPs_SetOutputEnablePin(gpiolnstanz, Pinnummer, 1);

N

m Erstellen Sie eine Funktion motor_Set_Moving_Direction, die die Drehrichtung der
Schrittmotoren in Abhingigkeit des PID Values bestimmt. Nutzen Sie dabei die Me-
thode

XGpioPs_WritePin()

m Erstellen Sie eine Funktion timer_Set_Interval_Length, die die Interval-Linge sowie
das Match-Value eines Timers setzt.

m Schreiben sie eine Task-Funktion timer_Task, die die Drehrichtung der Schrittmo-
toren sowie deren Geschwindigkeit in Abhingigkeit des pidValue setzt. Diese soll
die Timer stoppen, die GPIOs korrekt setzen, die Intervall-Lingen aus dem pid-
Value berechnen und dann die Timer wieder starten. Erstellen Sie in ihrer main.c
einen Task, der zunichst die timer_Init() Funktion aufruft und dann alle 2ms die
timer_Task() Funktion.

» Daihre Methode in Abhingigkeit zum PID Wert steht, und dieser in der main.c
simuliert wird, bietet es sich an die globale Variable pidValue mit extern in ihre
Datei einzubinden.

» Uberlegen Sie sich welche Konsequenzen nebenliufiger Schreib- oder Lesezu-
griff auf eine Variable haben kann und wie Sie diese Effekte verhindern kon-
nen.

» Tipp: Nutzen Sie Critical Sections beim Zugrift auf die globale pidValue Varia-
ble.

7.4. Post-Kolloquium

m Zeichnen Sie mit der Funktion "iprobe.timing” die Pulse auf'die Sie mit dem Timer
generieren.

m Wie konnen in Trace32 Breakpoints erstellt werden? Wie kann eine Bedingung an-
gegeben werden?

8. Aufgabe 4

Nachdem in der vorherigen Aufgabe das Thema JTAG bereits angerissen wurde, soll es
auch in Aufgabe 4 behandelt werden. Es wird eine weitere Komponente des Anwendungs-
falls debuggt. Zusitzlich zum JTAG-Debugging wollen wir Thnen einige Funktionen des
Lauterbach-Debuggers niher bringen.

Damit der Roboter jederzeit seinen Winkel zur Horizontalen kennt, bendtigt er eine
echtzeitfihige Lagemessung. Der Treiber fiir die Ansteuerung der inertialen Messeinheit
iiber I?C wird mit Hilfe des JTAG-Debuggings und der Nutzung des Lauterbach Logik
Analysators in einen fehlerfreien Zustand gebracht. Die Werte des Sensors werden den
anderen Programmmodulen tiber globale Variablen zur Verfligung gestellt.

Die Aufgabe ist es, ein Programm zu schreiben, dass die aktuellen Werte des Gyroskops
und des Beschleunigungssensors ausliefst und in zwei globalen Variablen speichert. Maf3-
geblich fiir die Funktion des Moduls ist die korrekte Initialisierung des I2C Busses, die
richtige Konfiguration der inertialen Messeinheit und das korrekte Umwandeln der Da-
ten. Bei dieser Aufgabe wird neben dem JTAG-Debugging unterstiitzend ein Logik Ana-
lysator genutzt. Die Studierenden sollen mit Hilfe des Lauterbach Logic Analysers die
{ibertragenen Daten auf dem I2C Bus einsehen und die gesendeten Informationen ex-
trahieren. Zur Kontrolle kann die von Lauterbach zur Verfiigung gestellte automatische
Protokollanalyse des Logik Analysators genutzt werden.

8.1. Wissen

8.1.1. Inertiale Messeinheit und Sensorfusion

Die MPU9250 von InvenSense bietet eine 9-Achsen Messeinheit mit Accelerometer, Gy-
roskop und Magnetometer. Die MPU9250 wird auch als Bewegungs- und Lagesensor in
Smartphones genutzt. Die aus der Sensoreinheit ausgelesenen Werte miissen fiir die wei-
tere Verwendung bearbeitet werden. Dabei ist es sinnvoll sich auf die Kippachse nach
vorne und hinten zu konzentrieren. Um die Lage richtig einschitzen zu konnen, bendotigt
man zwei Messwerte von dem Sensor. Die Beschleunigung sowie die Winkelgeschwindig-
keit. Um einen moglichst fehlerfreien Wert zu bekommen, miissen die Messwerte gefiltert
werden. Die Probleme, die sich dabei auftun, sind folgende: Der Beschleunigungssensor
ist sehr anfillig fiir Rauschen, also fiir kurzfristige Fehler. Dafiir kann er die Winkel-
messung nicht relativ, sondern absolut ausfithren. Die Winkelgeschwindigkeit wird sehr
genau gemessen und kaum von dufleren Einfliissen gestort. Der aus dem Gyroskop resul-
tierende Winkel unterliegt durch die Integration der Messwerte einem gewissen Drift. Es

34

ist notig diese Sensordaten zu filtern und zu kombinieren, um die Schwichen der beiden
einzelnen Methoden damit auszugleichen.

Neben der in Aufgabe 3 erlernten Arbeitsweise mit JTAG-Debugging, ist Grundlagen-
wissen iiber die Funktionsweise von I2C nétig. Dazu kénnen Sie sich [i2c] ansehen. Es
sollte bekannt sein, wie ein I?C Gerit angesprochen wird, welche Pins dafiir notig sind
und wie Registern im Zielgerit gelesen oder geschrieben werden. Fiir die Analyse mit
dem Lauterbach Logic Analyser finden sich in [Laul4, S. 48-49] Informationen zur auto-
matischen Protokollanalyse von I2C. Diese Informationen sind in dem Datenblatt [nva]
und der Register Map [Invb] der inertialen Messeinheit zu finden. Sie sollten tiber Wis-
sen zu inertialen Messeinheiten verfiigen und sich dariiber im Klaren sein, warum eine
Sensorfusion noétig ist und wie man sie realisiert. Informationen dazu konnen Sie aus der
folgenden Quelle beziehen [HiB|.

8.1.2. Visualisierung von Daten

Der Lauterbach-Debbuger und die Trace32-Software bietet eine Vielzahl verschiedener
Funktionen. Beim Arbeiten mit Sensoren, die mit hoher Frequenz mehrere Messwerte
produzieren, kann es sehr hilfreich sein die Daten zu visualisieren.

Eine IMU ist ein solcher Sensor. Bei mehreren Achsen und wenigen zehn Hertz Messfre-
quenz ist die Ausgabe mit printf nahezu unbrauchbar, da der Entwickler kaum mit dem
Lesen der Werte hinterher kommt. Ganz abgesehen von dem grofen Einfluss von printf
auf das Zeitverhalten.

Es bietet sich daher an die Daten graphisch in einem Koordinatensystem darzustellen.
Der Lauterbach ermdglicht es auf Variablen zuzugreifen und diese zu visualisieren. Dazu
speichert man in die Messwerte in seinem Programm iiber eine gewisse Zeit in einem
Array ab. Anschlieflend hilt man sein Programm durch den Debugger an.

Zum einen kann man nach dem Array in dem “Symbol.browse”-Fenster suchen, die
Variable zur Watch-List hinzufligen und sich die Werte textlich anzeigen lassen.

Zum anderen kann man das Array plotten, indem man in die Lauterbach-Befehlszeile
folgendes eingibt:

var .DRAW <NAME_OF_ARRAY>

Der Befehl ermoglicht es auch mehrere Arrays in ein Fenster zu plotten, um Zusam-
menhinge zwischen Daten besser zu verstehen:

var.DRAW <NAME_OF_ARRAY_1> <NAME_OF_ARRAY_2>

8.2. PrRe-KorLoQuUIUM 35

8.2. Pre-Kolloquium

m Wie liest man aus einem I2C Geriit?

m Welche Register aus der IMU sind interessant fiir uns? Schauen Sie sich das Re-
gisterdatenblatt der IMU an und suchen Sie Register, die fiir unsere Anwendung
interessant sind

m Wie werden rauschende Signale geglittet?
m Was wollen wir aus der IMU lesen?
®m Miissen wir die IMU erst aufwecken?

m Wie konfiguriert man Gyroskop und Accelerometer so, dass beim Gyroskop Dps =
500 ist, ACC Skala =4g ?

m Mit welcher Formel berechnet man den Winkel aus ACC und Gyroskop-Daten? Wo
ist der Unterschied zwischen beiden? Wo spielt die Sampling-Zeit mit hinein?

m Werten Sie den gegebenen I2C Datenstrom (siehe 8.1) aus und geben Sie Adresse und
Inhalt der Nachricht wieder, handelt es sich um Lesen oder um Schreiben? (Tipp:
Abgebildet ist nur der Datenstrom ausgehend vom Master)

m Warum benétigt man zur sicheren Winkelberechnung eine Sensorfusion aus den
Daten von ACC und Gyroskop? Warum reicht ein Sensor hier nicht aus? (Machen
Sie sich mit dem Komplementirfilter vertraut)

8.3. Aufgabe

In dieser Aufgabe sollen Sie folgenden Ablauf schrittweise implementieren:
= 12C initialisieren

IMU initialisieren

IMU-Task starten

Periodisch IMU-Daten abfragen

Winkel aus Accelerometer- und Gyro-Daten berechnen

Berechneten Winkel an PID Filter propagieren

IMU-Task erstellen

Die imu.c soll zwei Methoden nach auflen bereitstellten. Diese lauten:

36

)

int mpu9250_Imu_Init(void *pdata); /| Initialize
int mpu9250_CalculateAngle(void «pdata); //Task function

Erstellen Sie in der main.c einen neuen 5-Millisekunden-Task und starten Sie ihn so,
wie in Aufgabe 2 gelernt. Dieser soll das IMU Modul zunichst initialisieren und dann
in der while(1) Schleife die Berechnung des Winkels periodisch aufrufen. Fiillen Sie in
der weiteren Aufgabe diese beiden Methoden mit allem was zur Initialisierung und zur
Berechnung benotigt wird aus.

I2C initialisieren

Erstellen Sie in der imu.c eine Methode zur Initialisierung der IC Instanz:

static uint8_t mpu9250_Tic_Init();

» Zunichst die globale Variable fiir die I>C Instanz erstellen

static XTicPs Iic;

-

» Zur I2C Initialisierung: Config Struct erstellen

XTIicPs_Config *Config;

» Config-Struct mit XIicPs Config fiillen, (Tipp: Informationen zu Ubergabeparame-
tern finden sich in der imu.h)

1‘ Config = XTicPs_LookupConfig(...);

= 12C initialisieren und Status abfragen, iibergeben Sie der Methode die benétigten
Parameter (Tipp: Basisaddresse des I2C findet sich auch in dem Config-Struct)

XIicPs_CfgInitialize (...) ;

m Zur Sicherheit einen Self-Test machen und das Ergebnis abfragen (in die Methode
gucken, um den Riickgabewert interpretieren zu kénnen)

1| XIicPs_SelfTest (...) ;

m 12C Clockrate setzen, suchen Sie in der imu.h nach Ubergabeparametern. Achtung:
Die Clockrate soll 100kHz betragen.

XTicPs_SetSClk (...) ;

8.3. AUFGABE

Das Nutzen der I2C Schnittstelle erfolgt iiber zwei Methoden zum Senden und Empfan-
gen von Daten aus den Registern des MPU9250 Sensors. Erstellen und implementieren
Sie die beiden bendtigten Methoden in der Datei imu.c.

static uint8_t mpu9250_Write_Reg(uint8_t iic_address, uint8_t data)
static int8_t mpu9250_Read_Data(uint8_t iic_address, uint8_t length, u8 RecvBuffer [])

Die bendtigte Schnittstelle des T2C Treibers von Xilinx sind die Methoden

XTicPs_MasterSendPolled()

und

XIicPs_MasterRecvPolled()

Schauen Sie sich die Methoden an und identifizieren Sie die benédtigten Ubergabepara-
meter. Implementieren Sie auch hier eine Fehleriiberpriifung.

IMU initialisieren

Nach der erfolgreichen Initialisierung der I>C Schnittstelle ist es notwendig die inertiale
Messeinheit zu initialisieren. Nutzen Sie dafiir die zuvor implementierten Send- und Recv
Methoden, um die Register der IMU wie gewiinscht zu konfigurieren. Die benétigten
Register haben Sie im Prikolloquium ausgearbeitet. Zu tiberpriifen, ob die Initialisierung
erfolgreich war, ist nicht zwingend notwendig, hilft im Zweifel aber Fehler zu finden. Hier
kann der Status der IMU einmal abgefragt werden.

IMU-Daten abfragen

Nach dem Initialisieren der IMU sollen Sie nun eine Methode zum Auslesen der Daten
von Accelerometer und Gyroskop erstellen. Lesen Sie die Daten der IMU an einem Stiick
aus und vermeiden Sie schnell aufeinander folgende Lesevorginge. Es lassen sich alle
Register mit den bendtigten Rohwerten mit einem Lesevorgang auslesen.

Falls beim Auslesen Fehler auftreten, ist es sinnvoll den Status des Sensors auszulesen.
Vergleichen Sie dazu den Inhalt des Statusregisters mit dem angegebenen Sollwert. Geh-
en Sie systematisch alle Fehlerquellen durch, die die Kommunikation mit dem Sensor
unterbinden kénnten. Einen Fehler in der Hardware konnen Sie ausschliefen.

Wenden Sie das Wissen aus 8.1.2 an, um die Daten von Accelerometer und Gyroskop mit
der Trace32-Software zu plotten. Schalten Sie den Lowpass Filter vom Accelerometer an
und aus und vergleichen Sie die Qualitit der Messwerte.

Nutzen Sie den Lauterbach Logik Analysator (Untermenii ‘Probe‘->‘Timing‘) um die I2C

37

38

Ubertragung zu inspizieren. Verifizieren Sie die Rohwerte durch den Ubungsleiter.
Tipp: Uberlegen Sie genau welche Sensorachsen Sie fiir die Winkelberechnung im wei-
teren Verlauf der Aufgabe benétigen und welche nicht. Vergleichen Sie hierzu die Grafik
zur Ausrichtung der Achsen im Datenblatt der IMU mit der Lage auf dem Roboter im
Versuchsaufbau.

Winkel berechnen

Auflerdem miissen die Accelerometerdaten skaliert werden. Fiir die Winkelberechnung
ist es notig, dass das Accelerometer die Erdbeschleunigung auf jeder der drei Achsen
gleich misst (von Werk aus nicht der Fall). Finden Sie zunichst die Maximal- und Mi-
nimalwerte fiir jede Achse beziiglich der Erdbeschleunigung heraus. Dies kénnen Sie
tun, indem Sie den Roboter langsam um jede Achse drehen dabei jede Messung mit den
_imu_accMaxData und _imu_accMinData Arrays vergleichen und diese ggf. aktualisieren.
Notieren Sie sich diese Messwerte und nutzen Sie sie im Folgenden als Konstanten fiir die
Grenzen des ACC Wertebereiches. Mappen Sie anschliefSend die Daten der einzelnen Ach-
sen des Accelerometers auf diesen Wertebereich. Die Gyroskopdaten miissen mit einem
passenden Offset kalibiert werden. Beachten Sie aufSerdem den entsprechenden sensiti-
vity scale factor (Stichwort: GYRO_FS_SEL) beim Ermitteln der Daten des Gyroskop.

Im Folgenden sollen die gemessenen Werte in eine Winkelangabe transformiert wer-
den. Berechnen Sie zwei Winkel: Der erste soll auf Basis der Accelerometerdaten (Stich-
wort: atan2()) berechnet werden, der zweite auf Basis der Gyrodaten (Stichwort: Winkel-
geschwindigkeit -> Winkel). Uberpriifen Sie die beiden Winkel auf ihre Plausibilitit. Zu-
sitzlich benotigen Sie noch die Winkelinderung pro Zeitschritt.

Benutzen Sie die oben genannten Winkel und implementieren Sie einen Komplemen-
tirfilter, der die beiden Winkel zu einem fusioniert. Dieser sollte wie in etwa so aussehen:

currentAngle = 0.98«(previousAngle + gyroAnglePerTimeStep) + 0.02xaccAngle;

In Aufgabe 7 wird Thnen ein PID-Regler vorgegeben werden, damit die Motoren des
Roboters adiquat auf den aktuellen Winkel reagieren. Die Kommunikation mit dem PID-
Regler-Task liuft {iber eine globale Variable.

Tipps:

m Achten Sie auf das Einfiigen der Datei in dem richtigen Ordner.
m Schauen Sie sich die IMU an und interpretieren Sie die Achsausrichtung, um her-

auszufinden welche Achsen fiir die Berechnung der Winkel aus Accelerometer- und
Gyroskopdaten nétig sind.

m Was macht die Funktion atan2()? Zu welcher Library gehort sie? Es gibt eine Beson-
derheit die zur Verwendung der Library erfiillt sein muss, welche ist es?

8.4. PosT-KoLLOQUIUM

m Wie erstellt man aus dem Gyroskopwert dem aktuellen Winkel? Fithren Sie fur die
Sample Time eine Konstante ein, die spiter an die echte Ausfithrungsperiode an-
gepasst werden kann

8.4. Post-Kolloquium

Bereiten Sie sich auf das Kolloquium vor, indem Sie sich die Arbeitsergebnisse und ge-
fundenen Fehler gut dokumentieren. Verstehen Sie, was Sie programmiert haben.

39

40

line

SBgoos

-3.71800606000s

-3.717956600s
l

-3.71796066000s

-3.7178560000s
I !

ip.ee[H
ip.@1fH

=

LT LT L

ip.@2fH

ip.@3fH

I S —

Abbildung 8.1.: I2C Datenstrom zum Auswerten

9. Aufgabe 5

9.1. Wissen

In dieser Aufgabe soll das Wissen in Bezug auf betriebssystemeigene Funktionen erweitert
werden. Zur Erinnerung um im Zweifelsfall den richtigen Pfad zu finden: Der Zyng-7000
arbeitet mit Cortex A9 Cores. Wir nutzen die GNU Toolchain.

Alle Ergebnisse dieser Aufgabe werden im Post-Kolloquium besprochen.

9.1.1. Bedienung des Lauterbach-Debuggers

Die Trace32-Software enthilt viele Komfort-Funktionen, die das Debugging aber auch die
Bedienung der Software erleichtern sollen.

Window

Die vielen Fenster konnen schnell uniibersichtlich werden und tiberfordern Einsteiger
hiufig. Daher kénnen die Fenster automatisch angeordnet werden:
Window->Cascade oder Window->Tile

Anpassungen die wihrend des Betriebs an den Fenstern vorgenommen wurden sind,
konnen in verschiedenen Konfigurationen gespeichert und geladen werden:
Window->Store Windows to... oder Window->Load Windows from...

Weitere Fenster konnen iiber die Lauterbach-Befehlszeile ge6ffnet werden, indem die
Caption des Fensters eingegeben wird. Viele der unter der Befehlszeile gelisteten Befehle
sind auch Fenster und sind je nach Anwendungszweck unterschiedlich niitzlich.

So kann sich der Befehlsverlauf mit

History

angezeigt werden lassen und eine Ubersicht aller Tasks findet sich mit

Task.task

Diese ist insbesondere dann hilfreich, wenn man sich mit Kontext-Wechsel beschiftigt.
Dies setzt aber voraus, dass die Tasks benannt wurden sind. Dazu benutzt man:

OSTaskNameSet(TASK_PRIORITY, TASK_NAME, &ERROR_CODE)

42

Break- und Watchpoints

Wie schon bei den Fenster-Einstellungen kann Trace32 auch Breakpoints permanent spei-
chern, sodass eine Debug-Session unterbrochen und am nichsten Arbeitstag fortgesetzt
werden kann. Das Speichern erreicht man mit:

STORE <filename>.cmm BREAK

Zum Laden benutzt man:

do <filename>.cmm

Um Watchpoints auf eine Variable zu setzen gibt es den Befehl

[
1 ‘ Var.Break.Set <variable_name>; [<access> [VarCONDition <condition> ‘
L

m <variable_name> ist mit der Variable zu ersetzen, die man iiberwachen mochte
m <access> ist der Zugrift: ReadWrite, Read, Write

m <condition> ist eine Bedingung in C-Style; zum Beispiel: (a == 3). Kann aber auch
weggelassen werden, falls bei jedem Zugriff getriggered werden soll.

Damit lassen sich auch schwer erreichbare Stellen debuggen. So kann man in den
Kontext-Wechsel eines bestimmten Tasks springen, indem man auf” OSPrioHighRdy trig-
gered und als Bedingung die Prioritit des aktuellen Tasks angibt:

Var.Break.Set OSPrioHighRdy; /Write /VarCONDition (OSPrioCur==<priority>)

-

Auch interessant ist es am Ende einer Funktion anzuhalten, zum Beispiel dann wenn
der Riicksprung nicht mehr funktioniert.

break.set Symbol.end(<function_name>)

Ergebnisse speichern

Die Software besitzt auch Funktionen, die die Dokumentation der Ergebnisse erleichtert.
So konnen Screenshots des tibergeordneten Parent-Window gemacht werden:
Window->Screenshot to file...

Genauso wie Screenshots eines einzelner, untergeordneter Fensters gemacht werden
koénnen. Dazu klickt man in die obere, linke Ecke des Fensters auf sein Icon und wihlt
Window Screenshot to file...

9.2. AUFGABE 43

In diesem Menii kann der Fenster-Inhalt auch mit To Clipboard in Textform gespeichert
werden.

9.2. Aufgabe

m Ziel soll es zuniichst sein, die Methode

[
I ‘ UCOSStartup()

zu untersuchen.
» Warum wird diese Methode noch vor dem Code aus der Main aufgerufen?
= Welchen Sinn hat diese Methode?

m Was macht die Methode:

[
1| CPU_Init()

m Welche Aufgabe hat die Funktion:

1| Mem_Init()

Muss diese Funktion aufgerufen werden?

m Betrachten Sie die Funktion

OSInit()

Was ist in diesem Kontext ein Hook?

Warum werden die Methoden

OS_InitMisc()
OS_InitRdyList()
OS_InitTCBList()

W N e

benotigt? Was wiirde passieren, wiirden sie nicht ausgefiihrt werden.
» Inwiefern wird in dieser Methode Multitasking vorbereitet?

m Was ist ein idle-Task und wofiir wird er benétigt? Wo wird er erstellt? Welche Prio-
ritdt sollte er haben?

m Was ist ein Startup-Task? Was passiert dort?

-

Erkliren Sie den Sinn der Methode

OSStart()

Was passiert in der Funktion

OSTaskCreateExt()

= Was macht die Funktion

OSTaskStackInit()

» Was macht folgende Methode:

OS_TCBInit()

Wie funktioniert die Methode

OStimeDly()

Untersuchen Sie die Methoden, warum wird eine kritische Sektion betreten?

OS_Sched() und OS_SchedNew()

Nachdem der Task erstellt wurde muss das Betriebssystem auch mit dem neuen
Task arbeiten.

OSStartHighRdy()

Wofiir sind in dieser Funktion die Anweisungen in Zeile 202 bis 205 zustindig?
Warum ist ein Ausrufezeichen in manchen Befehlen? Was macht das Zirkumflex
hinter dem Befehl?

Was passiert bei einem Kontextswitch? Schreiben Sie die Arbeitsschritte auf. Finden
Sie heraus in welcher Methode der Kontextswitch ausgefiihrt wird. Welche wesent-
lichen Schritte werden abgearbeitet?

10. Aufgabe 6

10.1. Tracing

10.1.1. Funktionsdefinition

Unter Tracing bezeichnet man das Aufzeichnen des Programmablaufs, um diesen dann
spiter zur Analyse von Fehlern zu nutzen. Die Analyse kann nach der Ausfithrung des Pro-
gramms stattfinden. Auch Lese- und Schreibzugriffe auf Variablen kénnen aufgezeichnet
werden. Abstiirze, bei denen die Ursache in einem Speicheriiberlauf oder Nullpointer-
Exceptions vermutet wird, konnen damit gelost werden. Tracing kann auf verschiedene
Arten realisiert werden, die jeweils eigene Vor- und Nachteile mit sich bringen.
(Hardware-)Tracing lisst sich aber auch einsetzen, um den zeitlichen Ablauf des Pro-
gramms zu analysieren und so zum Beispiel Statistiken iiber die Worst-Case Execution
Time (WCET) anzustellen.

Software-Trace

Das untersuchte Programm wird so verindert, dass es die benétigten Informationen selbst
erzeugt. Dazu werden die gesammelten Daten in Variablen in den Zielgerit-RAM ge-
schrieben und spiter vom Debugger ausgelesen. Vorteile dieser Variante sind, dass die
Daten in beliebigem Umfang und beliebig genau bereitgestellt werden kénnen. Gleich-
zeitig ist allerdings zu bedenken, dass die Hardware, auf der das Programm liuft, nun
auch die Datensammlung bewerkstelligen muss. Die logische Konsequenz ist die Verrin-
gerung der Geschwindigkeit der Ausfithrung und ein erhéhter Speicherbedarf. Auf Sys-
temen, auf denen kaum Leistung und Speicher zur Verfligung stehen, kann dies zu Pro-
blemen fithren. AufSerdem ergibt sich aus dieser Variante des Tracings ein hoher Einfluss
auf das Zeitverhalten des Systems. Bestehende Fehler kénnen, wihrend der Ausfithrung
mit Software Tracing, anders auftreten als ohne Software-Tracing.

Als Beispiel soll hier ein Programm dienen, welches durch einen externen Interrupt be-
einflusst wird: Die Anwendung reagiert auf einen Interrupt und stiirzt im betrachteten
Fall ab. Dieser Absturz findet immer genau dann statt, wenn der Interrupt aktiviert wird,
wihrend sich das Programm in Methode XY befindet. Der Versuch diesen Fehler mit Hilfe
von Software-Tracing zu l6sen, verindert die Laufzeit des Programms so, dass der Inter-
rupt nun zu einem anderen Zeitpunkt im Programm auftritt. Das Programm stiirzt nun
wihrend des Debuggens nicht mehr ab. Jede dem Debuggen dienende Verinderung in-
dert das Zeitverhalten.

46

Abbildung 10.1.: Lauterbach Trace Debugger PowerTrace-II

Offchip-Trace

Im Gegensatz zum Software-Tracing kommt diese Methode des Tracings nicht ohne ex-
terne Trace-Hardware aus (siehe Abbildung 10.2). Sollen Informationen zum Zustand des
Systems zur Laufzeit aufgenommen werden, werden diese am Prozessor des Zielgerites
abgenommen. Die iibliche Methode bei Mikroprozessoren ist das Auslesen des Adress-
busses zum Speicher und einiger Steuersignale. Mithilfe dieser Daten kann der Programm-
ablaufrekonstruiert werden. Bei modernen Chips sind CPU Kerne, Haupt- und Massen-
speicher, Cache und Peripherie in einem Gehiuse integriert. Das macht es unmoglich den
Speicherbus abzugreifen. Um diese Systeme trotzdem noch mit Trace-Debugging nutzen
zu konnen, werden sogenannte Trace-Interfaces bereitgestellt. Auf ihnen wird in kom-
primierter Form der Programmfluss {ibertragen. Es handelt sich dabei meist um ein 4,
8 oder 16 Bit breiten Bus, iiber den mit Frequenzen bis 400 MHz Daten iibertragen wer-
den. Die bereitgestellten Informationen liegen so vor, wie sie auch in der CPU vorliegen
wiirden, dass heifdt es werden auch Speicherzugriffe aufgezeichnet. Es muss sich nicht um
etwaige fehlende Informationen iiber Lese-, aber vor allem Schreibzugrifte auf den Cache
gekiimmert werden.

Onchip-Trace

Diese Methode des Tracings kommt ohne externen Trace-Speicher aus. Es gibt CPUs mit
einem Trace-Speicher, der in das System integriert ist (siehe Abbildung 10.3). Auf die-
sem werden dhnlich der Methode des Offchip-Tracings die benotigten Daten gespeichert
und koénnen nach Beenden des Programms ausgelesen werden. Vorteil gegeniiber dem
Software-Tracing ist, dass keine Anderungen am Programm vorgenommen werden miis-
sen. Im Vergleich zum Offchip-Tracing wird zwar kein externer Trace-Speicher benétigt,

10.1. TRACING

Target Debugger

Debug Interface . L Debug Controller

N/
Core
— — Trace - Tool
N\
Trace Trace Memory
Interface N

Trigger

Abbildung 10.2.: Funktionsweise Oftchip Tracing

allerdings ist der interne Trace-Speicher aus Kostengriinden und Platzgriinden sehr klein
gehalten. Um diesen Nachteil zumindest teilweise zu kompensieren, gibt es hiufig die
Moglichkeit das Programm zu stoppen und einen Interrupt auszulésen, wenn der inter-
ne Trace-Speicher voll ist. Dann konnen die Daten auf die Debugplattform tibertragen
und das Programm weiter ausgefiihrt werden. Der Nachteil dieser Variante ist das beno-
tigte Starten und Stoppen und der damit verbundenen Eingrift in das Zeitverhalten des
Systems.

10.1.2. Art der Anwendung, Nutzung des Werkzeugs

Die Anwendungsmoglichkeiten von Tracing sind vielfiltig. Oft ist es nétig, die Ausfiih-
rungszeit einer Methode zu kennen. Auch ist es niitzlich die Register und Variablen ohne
Unterbrechung des Programms auslesen zu kénnen. Wenn ein Programm abstiirzt, macht
es Tracing moglich genau nachzuvollziehen, welche Funktionsaufrufe mit welchen Wer-
ten vor dem Absturz getitigt wurden. Programmkomponenten, die sich mit den vorhe-
rigen Debugwerkzeugen nur schwer oder gar nicht analysieren liefSen, kénnen nun auf
ihre Auswirkungen auf den Programmfluss {iberpriift werden. Dazu gehoért zum Beispiel
erhohte Interruptlast oder Unterbrechung durch héherpriore Tasks. Fehleranalyse von
Fehlern zur Laufzeit und die Analyse von Kommunikation iiber Busse wird einfacher.

In dieser Aufgabe sollen sie Trace-Points nutzen, um den Wechsel von einer Funktion zur
anderen darzustellen. Diese Tracepoints konnen zum Beispiel ein Taskset visualisieren,
indem sie zu Beginn und am Ende eines Tasks gesetzt werden.

47

48

Target Debugger

Debug Interface Debug Controller

V-

N
Trace
Memory
_ N —

\/
Trace
Controller

Abbildung 10.3.: Funktionsweise Onchip Tracing

10.1.3. Grenzen und Nachteile

Trotz dessen, dass die beiden in Kapitel 10.2 vorgestellten Trace-Methoden von den Nach-
teilen beziiglich des Heisenbergeffekts beim SoftwareTracing nicht betroffen sind, haben
sie Nachteile. Dazu gehort der sehr hohe Kaufpreis solcher Systeme, der sich im nied-
rigen flinfstelligem Bereich bewegt. AufSerdem ist die Unterstiitzung von Tracing unter
den Entwicklungsboards wesentlich weniger weit verbreitet, als das bei JTAG-Debugging
der Fall ist. Das Interface benétigt aufgrund der hohen Datenraten bei der Ubertragung
viele Pins. Unterschiede zwischen den verschiedenen Trace-Methoden lassen sich in der
Tabelle 10.1 finden.

Trace - Methode Trace- Trace - GroRe = | rogramm- Echtzeit-
Hardware anpassung verletzung

Software Trace keine klein ja
OffChip Trace ja grof3 keine keine
OnChip Trace keine klein keine keine

Tabelle 10.1.: Vergleich von Software-, Onchip- und Offchip- Trace

)

10.2. LAUTERBACH-WISSEN

Diese Aufgabe soll Thnen Methoden vermitteln, mit denen Sie die Auslastung des Sys-
tems beurteilen und optimieren kénnen. Grundstein fiir die Uberlegungen dieser Auf-
gabe ist ein System mit mehreren Tasks. Es stellt sich nun die Frage, wann welcher Task
CPU-Zeit in Anspruch nehmen darf. In der Aufgabe lernen Sie verschiede Scheduling
Algorithmen kennen und analysieren sie auf die Auswirkungen auf das Task-Set. Alle be-
nétigten Informationen zur Bearbeitung bekommen Sie aus den beigefiigten Folien der
Ubung und Vorlesung zur Lehrveranstaltung Rechnerstrukturen 2. In den Vorlesungsfoli-
en sind aus Kapitel 5, Folien 29 bis 59 relevant. Kapitel 9 und 10 der Ubung helfen beim
Anwenden der Verfahren. Sie finden das benétigte Material in Threm Repository unter
RS2_Unterlagen.

10.2. Lauterbach-Wissen

10.2.1. Tracing Points

Das Aufzeichnen des gesamten Programmflusses ist oftmals nicht notwendig und meis-
tens eher stérend beim Fehler finden, da die wichtigen Details in der Menge an Informa-
tionen untergehen. Daher ist es moglich das Tracing erst bei Bedarf zu aktivieren. Um
das Handling zu erleichtern, ist die Syntax bei Lauterbach zwischen Break-Points und
Tracing-Points sehr dhnlich (vgl. 9.1.1):

break.set <function_name> /program /TraceEnable

TraceEnable aktiviert das Tracing fiir einen kurzen Moment beim eintreten der Bedin-
gung oder des Events. Es erzeugt so zu sagen ein Snapshot. Dies ermoglicht es auch den
Zugriff auf eine Variable zu tracen und den Rest des Systems auszublenden:

var.break.set <variable_name> [<access> [TraceEnable

Leider stehen hardware-bedingt nur 4 TraceEnable-Points zur Verfiigung. Daher greift
man auf Trace-On/-Off-Points zurtick. Beim Erreichen eines Trace-On-Points wird das
Tracing aktiviert und wieder beendet beim Erreichen eines Trace-Off-Points.

break.set <function_name_1> [program [TraceON
break.set <function_name_2> /program /TraceOFF

Das Setzen von Tracepoints ist auch {iber die GUI moglich zB. indem man im Source-
code ein Rechtsklick macht und Breakpoints->TraceEnable/-On/-Off auswihlt.

Ebenso wie bei den Breakpoints ist die Verwendung des symbol-Befehls moglich [tra, S.
286]

49

50

-

= | B::Trace.STATistic.AddressDURation 0SQPost O5_EventTaskRdy
& setup |y Chart & Zoom & Zoom [F Full
samples: 3996. avr: @.958us min: @.6%4us max: 1.348us
total: 2.221s inm: 3.828ms out: 2.218s ratie: ®©.172%
up to |count ratio 1% 2% 5% 10% 20% 50% 108
= B.650us a. B.0080% o
B.780US B. B.150% |+ =
8.758us 1ESS, | 41, 51 5 |
8.800us 26, B.E50% |+
Q.8508us 459, 1.226% ==
8.9080us B1. 2.027% (n—
B.950us 15. B.375% |+
1.880U8 e. B.000%
1.858us a. B.0080%
1.18us 159. 0.475% |+
1.158us 1751, | 43, 5L o |
1.280uUs 55. 1.376% |-
1.258us 63. 1.576% |WE—
1.200uUs 185, 4. 6207 |
1.358us BT. 2,177% (—
1.480uU8 e. B.000%
1.450us a. B.0080% |
= g, 0.000% =
| [+ .4

Abbildung 10.4.: Verteilung dargestellt
Das Diagramm zeigt die Dauer zwischen OSQPost und OS_EventTaskRdy.

10.2.2. Darstellung

Die Darstellung der aufgezeichneten Daten iibernimmt die Trace32 Software und kann
angezeigt werden mit (Abbildung 10.5):

trace . chart

Alternativ kann iiber die GUI gearbeitet werden mit Trace->Chart->Symbols.

Je nach Dauer und Menge der Daten kann die Darstellung etwas dauern.
Zudem kann Lauterbach die Verteilung bestimmter Werte in einer Statistik darstellen.
Der folgende Befehl erzeugt ein Diagramm, dass die Verteilung der Dauer zwischen den
beiden angegebenen Methoden darstellt (Abbildung 10.4).

Trace.STATistic.AddressDURation <function_name_1> <function_name_2>

Falls man erneut Tracen mochte, sollte man die gespeicherten Daten zuriicksetzen mit:

Trace. Init

10.2. LAUTERBACH-WISSEN 51

B::Trace.chart Sl=HES

/& Setup fjf Groups I Config } Goto (3} Goto #jFind «IIn »«Out [Full

-2.2005 -2.1805 -2.0085 -1.98605 -1.8005

coreghos 0'0SQPendfH
08 EventTaskwa:LtEH

1 _wector_tablef
_CPU_ARM_ExceptIrgHndlr i
" OS_CPU_ARM_ExceptHndlrH
M_ExceptHndlr_BreakTask [
Qapl0s_cPU_ExceptHndlr
nt_impliUCOS IntHand'LerEH

ta3k2F1n15hed EH
tasksFinishedfH

I
JHRIE IO OB T 0 |
1000 O 00O R AR
II AR R RPN OO AT
57320 0 K |00 0000000000000 0000000000 0O AR A A0
‘App_TimeTickHook i 000000 000 O 000000000 000 RO AR VRO AT O

0= cpu chosTaskIdleHook i1
- coreos_TaskIdLleRg(|N I

L
||~| kT

Abbildung 10.5.: Trace im Chart dargestellt
Ein langer und grofler Trace, der zwar viele Daten enthilt. Aber die wesentlichen Punkte
sind nicht sofort ersichtlich.

52

10.3. Aufgabenteil 1

Bearbeiten Sie das Arbeitsblatt und notieren Sie sich Ergebnisse und Vorgehensweisen.
Beantworten Sie auflerdem folgende Fragen:

Was ist der Unterschied zwischen Analyse und Simulation?

Welche Arten der Taskaktivierung gibt es?

Was sind Arrival Curves?

Erkliren Sie die Begriffe Periode und Jitter

Was ist Praemption im Bezug auf Scheduling?

Halten Sie die Eckdaten von TDMA und Round Robin fest

m Was ist RMS?

Task Periode | Jitter BCET WCET Prioritét SPP SPNP

BCRT |WCRT BCRT WCRT

Task 1 |2ms Oms |0,5ms |1,0 ms

Task 2 |1ms Oms |0,1 ms |0,2 ms

Task 3 |10ms Oms |0,2 ms |0,2 ms 4,0 ms 9,7 ms
Task 4 |5ms Oms |0,2 ms |1,0 ms
Task 5 |20ms Oms |0,2 ms |0,5 ms 9,7 ms 8,3 ms

Aufgabe 1:

Vergeben sie die Prioritdten der Tasks nach RMS! 0 ist die hochste Prioritét.

Aufgabe 2:

Berechnen sie die maximale Last auf dem Prozessorkern!

Aufgabe 3:
Berechnen sie fiir das nun gegebene Taskset die BCRT sowohl fiir SPP als auch fiir SPNP Scheduling!

Aufgabe 4:
Ermitteln sie fiir Task 1 und Task 2 die WCRT, sowohl fiir SPP als auch SPNP, zeichnerisch!

Aufgabe 5:
Ermitteln sie fiir Task 4 die WCRT, fiir SPP rechnerisch und fiir SPNP zeichnerisch!

Aufgabe 6:

Angenommen die Aktivierung von Task 1 hat einen Jitter von 0,5ms, wie wirkt sich dies bei SPP
Scheduling auf die BCRT und WCRT von Task 2 und Task 4 aus?

Task BCRT SPP WCRT SPP

Task 2

Task 4

RMS: Rate Monotonic Scheduling BCRT / WCRT: {Best / Worst} Case Response Time
SPP: Static Priority Preemptive BCET / WCET: {Best / Worst} Case Execution Time

SPNP: Static Priority Non-Preemptive

54

10.4. Aufgabenteil 2

Kompilieren Sie nun die Aufgabe 6 und laden diese auf das Board. In dieser Aufgabe wird
ein Tasksetsimulator genutzt, indem sich mehrere Tasks nach dem P-J-D Modell kon-
figurieren lassen. Tragen Sie zunichst die korrekten Priorititen der Tasks in der Datei
src/gt_tasks.c ein.

Untersuchen Sie zunichst mit Hilfe der Tracingtechniken des Lauterbachs die Kali-
brierung des Tasksetsimulators. Der Simulator nutzt eine Schleife in der Funktion

__burn_wcet(CET,GT_CPU_OS_TASK_OFFSET,GT_CPU_CYCLE_SCALE);

um die BCET < CET < WCET zu simulieren. Das heif$t der Task hat effektiv keine
Funktion sondern verbraucht nur die Rechenzeit CET. Die CET wird dabei fiir jede Ak-
tivierung zufillig zwischen der BCET und WCET gewihlt. Um die Ausfiihrungszeiten
des Simulators auf den Prozessor anzupassen miissen bestimmte Parameter korrekt ge-
setzt werden, da ansonsten die CET nicht den Sollwerten entsprechen. Thre Aufgabe ist
es zunichst diese Parameter so zu konfigurieren, dass die Ergebnisse den Sollwerten ent-
sprechen. Die Parameter unterteilen sich in einen Scale-Wert und einen Offset. Der Scale-
Parameter garantiert die korrekte Ausfithrungszeit langer Delays. Der Offset muss korrekt
gesetzt werden, damit kurze Delays genau genug fiir eine Simulation des Taskssets sind.
Zu Beginn der Main-Funktion wird eine Methode zum Kalibrieren der Parameter aufge-
rufen. Der Kommentar zu der Methode erklirt die Funtionsweise. Messen Sie die Aus-
fithrungszeiten der von dem Taskset genutzen Funktion in der Methode GT_calibrate
indem Sie Tracepunkte nutzen. Die CET wird dabei exponentiell von 0,1ms auf 51,2ms
erhoht. Die Zeiten zwischen den Trace-Events konnen sie in der trace.list Darstellung ab-
lesen. Nutzen Sie zunichst weiter das Onchip-Tracing (zc706_onchip_trace.cmm), da bei der
Kalibrierung ja nur wenige Tracedaten generiert werden.

Erstellen Sie sich eine Tabelle mit Soll- und Ist-Werten fiir die einzelnen Schleifen-
Durchliufe in der Kalibrierungsfunktion. Nun kénnen Sie das Verhiltnis zwischen Soll-
und Ist-Werten ausrechnen und in einem Diagram darstellen lassen. Stellen Sie die Para-
meter so ein, dass 0,96 < IST/SOLL < 1,0 gilt.

Tipp: Passen Sie ihr .cmm Skript fiir Aufgabe 6 an, um wiederkehrende Arbeitsschritte
wie das Setzen von Break-/ Tracepunkten zu automatisieren!

Ist die Kalibrierung gegliickt sollen Sie das Taskset aus der theorethischen Aufgabe in
den Simulator {ibertragen und visualisieren. Der Taskssetsimulator erlaubt es mehrere
Tasks nach dem Periode-Jitter Modell zu konfigurieren. Diese sind in der Datei APP/Auf-
gabeG/src/gt_tasks.c bereits mit den BCET und WCET Parametern aus dem Aufgabenblatt
definiert.

-

)

N

10.4. AUFGABENTEIL 2

Nach der Bearbeitung des Arbeitsblattes und der Kalibrierung des Simulators sollen Sie

nun untersuchen, wie sich das vorher berechnete Zeitverhalten auf einem realen System

verhilt. Nutzen Sie im Folgenden OffChip-Tracing, indem Sie die zc706_offchip_trace.cmm

ausfithren.

Vergleichen Sie die zc706_offchip_trace.cmm und zc706_onchip_trace.cmm. Wo liegen die

Unterschiede? Tipp: Tools wie meld oder vimdiff erleichtern die Arbeit.

In der Datei finden sich auch die Methoden

GT_TaskActivationHook
GT_TaskStartHook

3| GT_TaskEndHook

GT_TaskSwHook

Mit ihnen lassen sich Aktionen auslosen, wenn ein Task bereit ist, gestartet, gescheduled

oder beendet wird.

Erweitern Sie diese Methoden so, dass sie unterscheiden kénnen, welcher Task ak-
tiviert bzw. beendet wurde.

Benutzen Sie zu erst Trace-Enable Points, um das Scheduling eines einzelnen Tasks
aufzuzeichnen (Activated, Scheduled, Not-Scheduled, Finished).

Benutzen Sie anschlieflend Trace-On/-Off Points, um das Verhalten aller Tasks zu
untersuchen.

Erstellen Sie eine Statistik iiber die Verteilung der WCET und der WCRT jedes
Tasks.

Vergessen Sie nicht ihre Ergebnisse zu dokumentieren z.B. mit Screenshots oder als
Text-Export.

55

11. Aufgabe 7

11.1. Aufgabenteil 1

In dieser Aufgabe sollen die zuvor erstellten Programmodule zusammengesetzt werden.
Es soll ein balancierender Roboter entstehen. Erstellen Sie auf Basis des in Aufgabe 6
genutzten Taskset-Simulators ein Taskset, dass ihre Tasks periodisch ausfiihrt. Denken
Sie daran ihre Init-Funktionen einzutragen. Nachfolgend werden die Anforderungen an
die bisherigen Programme aufgelistet:

11.1.1. PID
Einginge:
m Aktuellen Winkel der IMU
= Sample Time
Funktion
m PID Wert erstellen
Ausginge

m PID Wert zwischen -1000 und 1000

11.1.2. IMU
Funktion

® IMU initialisieren

m Werte iiber 12C auslesen
Ausginge

m IMU Winkel

11.1.3. Motortreiber
Einginge

m PID Wert

11.2. AUFGABENTEIL 2

Funktion
» Ansteuern der Richtung der Motoren fiir vorwirts und riickwirts

® Regeln der Frequenz der Steps: max. Frequenz: min 800us/step, max 100us /step

11.2. Aufgabenteil 2

Sie finden sich nun in einem Szenario der Wirtschaft: Thr Vorgesetzter schrinkt ihre Res-
sourcen auf dem genutzten Steuergerit ein, weil diese anderweitig genutzt werden. Ver-
indern Sie dazu in der Datei gt_tasks.c das Struct GT_AllTasks wie folgt und fiigen Sie die
Zeile

{50, O, 0, {3, 5}

Quellcode 11.1: Ergiinzung Task Timing Struct

hinzu. Auflerdem sollen Sie in dem Struct GT_Tasks die Zeile

{ GT_TASK_EXT , GT_ACT_INT , 1, 33, mpu9250_Imu_Init, mpu9250_CalculateAngle , NULL,
GT_RUNABLE_NULL, GT_INTERNAL_NULL, (void)>_AllTasks[1]},

Quellcode 11.2: Erginzung Task Struct

hinzufiigen. Achten Sie darauf die Konstante GT_NUM_OF_TASKS anzupassen. Ihre Auf-
gabe ist es nun, die Funktionalitit des Roboters wiederherzustellen. Untersuchen Sie da-
fiir, wo im Programm CPU Zeit eingespart werden kann.

Um die in diesem Bereich genutzte CPU-Zeit zu reduzieren bietet es sich an die Kom-
munikation mit der inertialen Messeinheit zu verindern. Die Hardwareeinheit des Xynq-
7000 macht es moéglich nach jeder abgeschlossenen Kommunikation einen Interrupt aus-
zulgsen. Wir konnen die Kontrolle somit wihrend des Senden an andere Tasks abgeben.
Orientieren Sie sich fiir das Erstellen und Verkniipfen des Interrupts an dem des Timers.
Suchen Sie nach geeigneten Funktionen vergleichbar zu denen, die bei der Einrichtung
des Timer-Interrupts genutzt wurden. Grundsitzlich sollten Sie wie folgt vorgehen:

m Erstellen Sie einen Interrupt und suchen Sie die korrekte Interrupt-ID heraus, ge-
ben Sie als Interrupt-Handler MasterInterruptHandler an.

m Die I2C Instanz hat einen Statushandler der angegeben werden kann, er bietet sich
an um die Semaphore zu pushen

m Die Funktionen XTIicPs_MasterSendPolled und XIicPs_MasterRcvPolled haben passen-
de Gegenstiicke zur Nutzung mit Interrupts der I2C Hardware. Nach dem Aufrufen

57

58

der Funktion muss auf die Fertigstellung gewartet werden. Dies wird {iber den Se-
maphore realisiert.

Wir erstellen einen Interrupt der dann ausgeldst wird, wenn der Timer das Ende des
Intervalls erreicht hat. Die Interrupt ID ist TTC_PWM_INTR_ID. Dazu kénnen die beiden
folgenden Methoden genutzt werden.

UCOS_IntVectSet(...);
UCOS_IntSrcEn (...);

Die Interrupts werden nur dann ausgelost, wenn der Timer entsprechend konfiguriert
wird. Tipp: Nutzen Sie XTTCPS_IXR_INTERVAL_MASK

XTtcPs_EnableInterrupts(...)

Es muss nun eine Methode erstellt werden, die ausgefiihrt wird wenn der Interrupt
aufgerufen wurde. In dem Interrupt muss das Interruptflag wieder zuriickgesetzt werden,
damit der normale Programmablauf fortgefiihrt werden kann.

u32 StatusEvent;
StatusEvent = XTtcPs_GetInterruptStatus (...) ;
XTtcPs_ClearInterruptStatus (...) ;

Akronyme

DMA
elf
GCC
GDB
HLL
IDE
JTAG
MMU

Direct Memory Access

Executable and Linking Format

GNU Compiler Collection
GNU-Debugger

High Level Language

Integrated Development Environment
Joint Test Action Group

Memory Management Unit

A. Anhang

A.0.1. Parameter
» 12C Busgeschwindigkeit: 100000
m J2C Device ID: XPAR_XIICPS_1_DEVICE_ID

MPU9250 I2C Adresse: 0x68

Timer 0 Device ID: XPAR_PS7_TTC_0_DEVICE_ID

Timer 1 Device ID: XPAR_PS7_TTC_1_DEVICE_ID

Timer O Interrupt ID: XPAR_XTTCPS_O_INTR

Literaturverzeichnis

(ALl

[arm]

[con]

[ech]

[feSuK14]

[Gra]

[HiB]

[i2c]

[Inva]

[Invb]

Allegro. A498S, DMOS Microstepping Driver. ~ Verfiigbar online unter
https://www.pololu.com/file/0®J450/a4988_DMOS_microstepping_
driver_with_translator.pdf; abgerufen am 22.4.2019. 29

Infocenter von ARM. Verﬁigbar online unter http://infocenter.arm.com/
help/index. jsp?topic=/com.arm.doc.faqs/ka4141.html; abgerufen am
22.4.2019. 24

University of Illinois System Website. Verfiigbar online unter https://www.
cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html;
abgerufen am 22.4.2019.

Vorlesungsfolien der Uni Erlangen. Verfiigbar online unter http:
//www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/
stpl-pa-ws03-kapitel4.pdf; abgerufen am 22.4.2019. 5

Fraunhofer-Institut fiir eingebettete Systeme wund Kommunikati-
onstechnik. Jahresbericht. = 2014. Verfiigbar online unter https:
//www .esk. fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_
Fraunhofer_ESK_2013-2014.pdf; abgerufen am 22.4.2019.

Philipp Graf. Verfiigbar online unter https://pdfs.semanticscholar.
org/0aa7/b91e99d9749adbdca55286c31c0c990fe849.pdf; abgerufen am
22.4.2019. 24

Team HiBit. Complementary filter and relative orientation with
MPU9250. Verfiigbar online unter https://www.hackster.io/hibit/
complementary-filter-and-relative-orientation-with-mpu9250-d4£79d;
abgerufen am 08.04.2024. 34

I2C Communication. Verfiigbar online unter https://www.totalphase.com/
support/articles/200349156-I2C-Background; abgerufen am 22.4.2019. 34

Invensense. MPU9250 Datenblatt. Verfiigbar online unter http://www.
invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.
pdf; abgerufen am 22.4.2019. 34

Invensense. MPU9250 Register Map. Verfligbar online unter http://www.
invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.
pdf; abgerufen am 22.4.2019. 34

https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_with_translator.pdf
https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_with_translator.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4141.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4141.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/stp1-pa-ws03-kapitel4.pdf
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/stp1-pa-ws03-kapitel4.pdf
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS03/V_STP1/Skript/stp1-pa-ws03-kapitel4.pdf
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_Fraunhofer_ESK_2013-2014.pdf
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_Fraunhofer_ESK_2013-2014.pdf
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/Jahresbericht_Fraunhofer_ESK_2013-2014.pdf
https://pdfs.semanticscholar.org/0aa7/b91e99d9749adbdca55286c31c0c990fe849.pdf
https://pdfs.semanticscholar.org/0aa7/b91e99d9749adbdca55286c31c0c990fe849.pdf
https://www.hackster.io/hibit/complementary-filter-and-relative-orientation-with-mpu9250-d4f79d
https://www.hackster.io/hibit/complementary-filter-and-relative-orientation-with-mpu9250-d4f79d
https://www.totalphase.com/support/articles/200349156-I2C-Background
https://www.totalphase.com/support/articles/200349156-I2C-Background
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.pdf
http://www.invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.pdf
http://www.invensense.com/wp-content/uploads/2017/11/RM-MPU-9250A-00-v1.6.pdf

62

[jta

[Koo]

[Lab02]
lau]

[Laul4]

[mak]

[mbe]

[mic]

[RS14]

[Xil18]
[zc7]

LITERATURVERZEICHNIS

Corelis JTAG Interface and Boundary-Scan Educational Resources. Ver-
figbar online unter https://www.corelis.com/education/tutorials/
jtag-tutorial/what-is-jtag/; abgerufen am 22.4.2019. 22

Phil Koopman. Better Embedded System SW: Blog to the Book:
Better Embedded System Software. Verfligbar online unter https:
//betterembsw.blogspot.com/2012/12/software-timing-loops.html;
abgerufen am 22.4.2019.

Jean J Labrosse. MicroC/OS-II: the real-time kernel. Taylor & Francis US, 2002.

Feature Overview Lauterbach Debugger. Verfligbar online unter https://www.
lauterbach.com/frames.html?home.html; abgerufen am 10.10.2019. 3

Lauterbach. Lauterbach iprobe user’s guide. 2014. Verfiigbar online
unter http://www2.lauterbach.com/pdf/iprobe_user.pdf; abgerufen am
22.4.2019. 34

C-HowTo: Makefile. Verfligbar online unter http://www.c-howto.de/
tutorial/makefiles/; abgerufen am 22.4.2019. 11

mbed.org, ARM, Timer and Interrupts. Verfiigbar online unter
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_
timers_and_interrupts.pdf; abgerufen am 22.4.2019.

Micrium Documentation. Verfiigbar online unter https://micrium.
atlassian.net/wiki/spaces/osiidoc/overview; abgerufen am 05.05.2022.
18

Universitit Mannheim Robert Schieler. Building and using a cross develop-
ment tool chain. 2014. Verfiigbar online unter ftp://gcc.gnu.org/pub/gcc/
summit/2003/BuildingandUsingaCrossDevelopmentToolChain.pdf; abge-
rufen am 22.4.2019. 11

General Function Reference. Verfiigbar online unter https://www2.
lauterbach.com/pdf/general_func.pdf; abgerufen am 25.05.2020. 49

Erstellung von Message Queues. Verfiigbar online unter https:
//wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/
anl005_inter-process_communication_.pdf; abgerufen am 21.5.2019.
18

Xilings. Zynq-7000 SoC, Technical Reference Manual, 2018. 29

Feature Overview Xilinx ZC706. Verfiigbar online unter https://www.
xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html; abgerufen
am 10.10.2019. 3

https://www.corelis.com/education/tutorials/jtag-tutorial/what-is-jtag/
https://www.corelis.com/education/tutorials/jtag-tutorial/what-is-jtag/
https://betterembsw.blogspot.com/2012/12/software-timing-loops.html
https://betterembsw.blogspot.com/2012/12/software-timing-loops.html
https://www.lauterbach.com/frames.html?home.html
https://www.lauterbach.com/frames.html?home.html
http://www2.lauterbach.com/pdf/iprobe_user.pdf
http://www.c-howto.de/tutorial/makefiles/
http://www.c-howto.de/tutorial/makefiles/
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_timers_and_interrupts.pdf
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_timers_and_interrupts.pdf
https://micrium.atlassian.net/wiki/spaces/osiidoc/overview
https://micrium.atlassian.net/wiki/spaces/osiidoc/overview
ftp://gcc.gnu.org/pub/gcc/summit/2003/Building and Using a Cross Development Tool Chain.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2003/Building and Using a Cross Development Tool Chain.pdf
https://www2.lauterbach.com/pdf/general_func.pdf
https://www2.lauterbach.com/pdf/general_func.pdf
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/an1005_inter-process_communication_.pdf
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/an1005_inter-process_communication_.pdf
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/4352/_media/an1005_inter-process_communication_.pdf
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

	Einleitung
	Motivation
	Lehrziel
	Anwendungsfall

	Hardware und Aufbau
	Hardware

	Grundlagenwissen
	Echtzeitsysteme
	Debugging

	Coding Guidelines
	Regeln

	Aufgabe 1
	Wissen
	Pre-Kolloquium
	Aufgabenstellung

	Aufgabe 2
	Wissen
	Aufgabenstellung
	Post-Kolloquium

	Aufgabe 3
	Wissen
	Pre-Kolloquium
	Aufgabe
	Post-Kolloquium

	Aufgabe 4
	Wissen
	Pre-Kolloquium
	Aufgabe
	Post-Kolloquium

	Aufgabe 5
	Wissen
	Aufgabe

	Aufgabe 6
	Tracing
	Lauterbach-Wissen
	Aufgabenteil 1
	Aufgabenteil 2

	Aufgabe 7
	Aufgabenteil 1
	Aufgabenteil 2

	Akronyme
	Anhang
	Literaturverzeichnis

