Functional Architectures

Structure and Mechanisms of the MicroC/OS-II
Microkernel

NOTE:

Some aspects are specific to MicroC/0S-Il and are implemented
differently in other microkernels

Rechnerstrukturen Il 1

Integrating different functionality on a processor

» Different applications executing on the same processor may
— Cause resource conflicts
* CPUtime
* Memory
e Peripherals
— Require arbitration for these conflicts
* Scheduler
* Memory Management
* Semaphores

e Often these conflicts are resolved by an operating system or runtime
environment

Rechnerstrukturen Il

What does a microkernel do?

e Task Scheduling

* Interrupt Handling

* Provide Communication Primitives
* Provide Synchronization Primitives
* Memory Management

* Provide Timebase

Jrhe kernel is the part of a multitasking system responsible for management
of tasks (i.e., for managing the CPU’s time) and communication between
tasks.” MicroC/OS-Il — The Real-Time Kernel

Rechnerstrukturen Il 3

SCHEDULING

Rechnerstrukturen Il

Task Scheduling

,A task, also called thread, is a simple program that thinks it has the CPU all
to itself.” MicroC/OS-1l — The Real-Time Kernel

,The scheduler, also called the dispatcher, is the part of the kernel responsible
for determining which task runs next.” MicroC/OS-Il — The Real-Time Kernel

N

Scheduler

A 4

|

Rechnerstrukturen Il)

Writing a task in MicroC/OS-II

 Writing a task

// do something periodically

 Ataskisa Cfunction
— needs to have a given signature
* Implements a while(1) loop

— never stops executing until explicitly shut down via OSTaskDelete

* Has at least one blocking function call to allow other tasks to execute,
otherwise it will prevent the execution of tasks with a lower priority

Rechnerstrukturen Il 6

Creating Tasks and Starting the Scheduler

INT8U prio = 3; // declare task priority
void *pTaskArg = O; // no task arguments used
OSInit () ; // init OS

Open Questions:

 How does a scheduler determine which task should run next?

* How does the scheduler start, stop and switch tasks, i.e. perform a context
switch?

* Why does each task need a stack?

Rechnerstrukturen Il 7

Task States (simplified)

* Only tasks in the running and ready state may be chosen by the scheduler
for execution

* Waiting tasks are in a blocking function call, e.g. OSTimeDly or OSQPend,
and have to wait for a condition to become ready

Blocking function

Unblocking function
call

call

Enter Interrupt

Context Switch

Task ISR
Running Running

Exit Interrupt

Rechnerstrukturen Il

Required Steps for Context Switches

* Interrupt currently executing task
e Save the registers of the task to be suspended to memory
— Program counter (PC)
— processor status word (PSW)
— Registers
— Stack Pointer (SP)
* Restore the registers of the task to be resumed
* Resume execution

Rechnerstrukturen Il

Task Control Block

» Task Control Blocks (OS_TCB) hold a task’s state and parameters

typedef struct os_tcb ({
struct os_tcb *OSTCBNext; // Pointer to next TCB in TCB list
struct os_tcb *OSTCBPrev; // Pointer to previous TCB in TCB list

} OS_TCB;

Rechnerstrukturen Il 10

Performing a Context Switch (Preconditions)

Low Priority Task High Priority Task
0S_TCB 0S_TCB
ostcBCur — | StackPtr OSHighRdy —» | StackPtr
CPU
SP
Low Memory Low Memory
R4
A
= Ra__ |~
Stack o1 R3‘
Growth R
PC R1’
PSW be
— PSW*
High Memory High Memory

Rechnerstrukturen Il 11

Performing a Context Switch (Saving Context)

Low Priority Task

OSTCBCur =

Stack
Growth

0S_TCB

StackPtrw

Low Memory

*
.
*
*
*
.
*
*
*
.
*
*
*
.
*
.
*
.
*
.0
.

CPU

.n
o
Ry
.
X

.
““““

R& |
R3 P
R2
R1
SN) ey
PSW |o—
High Memory

SP

R4

R3

R2

R1

PC

PSW

High Priority Task

OSHighRdy =——»

0S_TCB

StackPtr

Low Memory

R4’

R3’

R2'

R1

PC’

PSW*

High Memory

Rechnerstrukturen Il

12

Performing a Context Switch (Restoring Context)

Low Priority Task High Priority Task
OS_TCB OS_TCB
oSsTCBCur — | StackPtr OSHighRdy —» |..- StackPtr
OSTCBCur ==
CPU ““““““
sp -
Low Memory . Low Memory
R4’ :
A e R3’ : . -
R4 ~ R2 .. T R4 -
stack R3 2 A R3
Growth R2 R
R1 PC’ |] Rl
PC PSWI ;‘" E PCI
PSW ; G Pswe
High Memory High Memory

Rechnerstrukturen Il 13

Context Switch Pseudo-Code

 Implemented as Software-Interrupt

— Calling ISR automatically pushes PSW and PC to stack

— Returning from ISR automatically pops PSW and PC from stack
* Remaining part implemented in ISR

— Platform-dependent implementation

— Usually written in assembly

PUSH R1, R2, R3, R4 onto the current stack;
OSTCBCur->0OSTCBStkPtr = SP;

OSTCBCur = OSTCBHighRdy;

SP = OSTCBCur->OSTCBStkPtr;
POP R4, R3, R2, Rl from the new stack;

Execute ,return from interrupt"“ instruction

Rechnerstrukturen Il

Determining highest priority task ready to run

How do we determine the highest priority task, which is ready
to execute?

* MicroC/OS-l is targeted at real-time applications
* Determining highest priority ready task has to fulfill timing requirements
— Time must not depend on the number of tasks - O(1)

Rechnerstrukturen Il 15

Determining highest priority task ready to run

* Why not using a list of ready tasks sorted by priority?
— Sorting or list parsing cannot be done in O(1)

—> Would not be feasible for real-time systems as execution time would
depend on the number of tasks

Rechnerstrukturen Il

16

Determining highest priority task ready to run

* Each task ready to runis in a ready list consisting of two variables
— INT8U OSRdyGroup -—Bitiissetto1ifany bitin OSRdAyTbl[i] is

setto 1
— INT8U OSRdyTbl[8] - Indicates which task in the group is ready to
run
OSRdyG |7 61514321 OI Highest Priority
RayGroup
4 4 4 & : OSRdyTbl[8] l
T [O]]7|6(5(4(3|2|1]0

[1] |15|14(13]12|11|10]| 9| 8
[2] |23]22|21|20|19|18(17|16
[3] [31(30(29|28|27(26|25|24
[4] |39|38|37|36|35|34(33(32
[5] |47|46|45|44|43]42]41|40
[6] |55(54|53(52|51|50(49|48
[7] |63|62|61|60|59|58|57|56

[\

Lowest Priority Task Priority

Rechnerstrukturen Il 17

Making a task ready to run

* Task’s priority is devided into 2 fields
— 3bits for bit position in 0SRAyGroup and index to OSRdyTbl
— 3bits for bit position in OSRAyTb1l [index]

Task Priority [0 |0 |Y |Y YLX X | X]

Bit Position in OSRdyGroup and Bit Position in OSRdyTbl [Index]
Index for OSRAyTb1 []

« OSMapTbl[] is a precompiled table mapping bit position to bit mask
— e.g. OSMapTbl [2] maps to 0b00000100

* Code to make a task ready to run:

OSRdAyGrp |= OSMapTbl [prio >> 3]
OSRdyTbl [prio >> 3] |= OSMapTbl|[prio & 0x07]

Rechnerstrukturen Il 18

Determining highest priority task ready to run

* Finding highest priority task ready to run through another precompiled
table

— 0SUnMapTbl [bitmask] returns first bit that is one from a given
bitmask

— €.g.0SUnMapTbl[0b00101010] contains the value 1

* Finding highest priority task ready to run

y = 0OSUnMapTbl [OSRdAyGrp] ;
x = 0SUnMapTbl [OSRdyTbl[y]];
prio = (y << 3) + x;

« Some architectures directly support this technique as assembler
instructions

— ,,Count leading zeros“ -> clz
— ,,Count trailing zeros” -> ctz

Rechnerstrukturen Il

19

OSUnMapTbl Example

{

const OSUnMapTbl[256]

INT8U

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* 0x00 to O0xOF
/* 0x10 to Ox1F
/* 0x20 to Ox2F
/* 0x30 to Ox3F
/* 0x40 to Ox4F
/* 0x50 to Ox5F
/* 0x60 to Ox6F
/* 0x70 to Ox7F
/* 0x80 to Ox8F
/* 0x90 to Ox9F
/* 0xA0 to OxAF
/* 0xB0O to OxBF
/* 0xCO to OxCF
/* 0xDO to OxDF
/* 0xEO to OxEF
/* 0xFO0 to OxFF

L N L N N N N L NN
O ¥ N ¥ O T 0 < >SN O T 0

~
—~

Use OSUnMapTbl to find the lowest "1 in 36

2

OSUnMapTbl[36]

36

-> 0b00010100

20

Rechnerstrukturen Il

COMMUNICATION

Rechnerstrukturen Il

21

Communication through Message Queues

 Message queues allow to

— send a message between two tasks
i.e. pass a pointer to a memory location

— manage messages in FIFO (ring buffer) and LIFO (stack buffer)
— receive messages in blocking or non-blocking way

Sending Receiving
Task Task

Rechnerstrukturen Il

Queue Communication

 Code for message queue usage

Create Message Queue:

void *QMem[NumEntries];
OS_EVENT MsgQ;

//
//

memory to manage queue content

pointer to queue

MsgQ = OSQCreate (QMem, NumEntries); // create queue

Sending Task:

void *data = &messageToSend; // pointer to data to send
err = OSQPost (MsgQ, data); // post pointer in queue

Receiving Task:

void *data;

data = OSQPend (MsgQ, timeout, &err);

data = OSQAccept (MsgQ, &err) ;

//
//
//

//
//

pointer to data to receive
get pointer to message
blocking method

get pointer to message
non blocking method

Rechnerstrukturen Il

23

Blocking Receive from a Message Queue

* Pseudo-Code for blocking receive

void *OSQPend (pMsgQ, timeout, err) {

if queue not empty
acquire pointer to message from buffer
OSQAccept

decrement number of messages

return message pointer

else
set timeout for task in OS_TCB
register queue as waiting event in OS_TCB
call scheduler
acquire pointer to message from buffer
decrement number of messages

return message pointer

Rechnerstrukturen Il

MEMORY MANAGEMENT

Rechnerstrukturen Il

25

Memory Management in MicroC/OS-II

* Many Microkernels do not provide dynamic memory allocation, i.e. no
malloc ()

— not required for many applications

— generally not real-time capable, because allocation time often
depends on the history of previous allocations

* Dynamic allocation of static memory

Creating a Memory Partition:

OS_MEM *MemPartition; // memory partition
INT8U Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate (Memory, 100, 64);

// create memory partition with
// 100 blocks of 64 byte each

Retrieving and Returning Memory Blocks:

void *memBlock; // pointer to memory block
memBlock = OMemGet (MemPartition, err); // retrieve memory block
OSMemPut (MemPartition, memBlock) ; // return memory block

Rechnerstrukturen Il

26

Memory Management Structure

OS MEM *MemPartition;
INT8U Memory[100][64];

//
//
MemPartition = OSMemCreate (Memory, 100,

//
//

memory partition
6400 bytes of memory
64) ;

create memory partition with
100 blocks of 64 byte each

OS_MEM *MemPartition

Ly OSMemAddr

—

INT8U Memory|[][]

OSMemFreelList
OSMemBlksize
OSMemNBlks
OSMemNFree

AL A Y

Rechnerstrukturen Il

27

Properties of Memory Management

e Static block size prevents fragmentation

— no defragmentation required - makes real-time implementation
easier

* Management of free blocks in list
— blocks are retrieved from beginning of list
— blocks are returned to beginning of list
— 0(1) allocation and deallocation
 Management of blocks within memory partition
— Reduction of overhead

Rechnerstrukturen Il

28

Using Tasks, Queues and Memory Management

EXAMPLE

Rechnerstrukturen Il

29

Example

Message Queue

Tx OSQPost () OSQPend ()
Task]
~
\\\\\ ”’,—"
k\ \N\\\ ’—”’—’ ,I,
\ . * 1 - - ¢
AN write " 1 - /

N\ message | | /
OSMemGet () \ I] ;/ OSMemPut ()
\ : I /

\\ I i I,

\ I — i 'I

Message Memory Partition \\ ¥
OSMemAddr P 4 —> —> —>
OSMemFreelList —
OSMemBlksize
OSMemNBlks
OSMemNF'ree

Rechnerstrukturen Il

30

Summary

* What functionality does a microkernel do?

* How does scheduling in a microkernel work?

— Determining highest priority task in O(1)
* Code examples on how to use a microkernel

Task Scheduling

Interrupt Handling

Provide Communication Primitives
Provide Synchronization Primitives
Memory Management

Provide Timebase

Performing a context switch

— Writing and starting tasks

— Creating and using message queues

— Creating and using memory partitions

Rechnerstrukturen Il

31

