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Functional Architectures

Structure and Mechanisms of the MicroC/OS-II 
Microkernel
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NOTE:

Some aspects are specific to MicroC/OS-II and are implemented 
differently in other microkernels
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Integrating different functionality on a processor

• Different applications executing on the same processor may

– Cause resource conflicts

• CPU time

• Memory

• Peripherals

• …

– Require arbitration for these conflicts

• Scheduler

• Memory Management

• Semaphores

• …

• Often these conflicts are resolved by an operating system or runtime 
environment

2
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• Task Scheduling

• Interrupt Handling

• Provide Communication Primitives

• Provide Synchronization Primitives

• Memory Management

• Provide Timebase

„The kernel is the part of a multitasking system responsible for management
of tasks (i.e., for managing the CPU‘s time) and communication between
tasks.“ MicroC/OS-II – The Real-Time Kernel
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What does a microkernel do?
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SCHEDULING

4
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Task Scheduling

„A task, also called thread, is a simple program that thinks it has the CPU all

to itself.“ MicroC/OS-II – The Real-Time Kernel

„The scheduler, also called the dispatcher, is the part of the kernel responsible

for determining which task runs next.“ MicroC/OS-II – The Real-Time Kernel
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void task(void *pTaskArg){

while(1){

OSTimeDly(5);

// do something periodically

}

} // here be dragons

Writing a task in MicroC/OS-II

• Writing a task

6

• A task is a C function

– needs to have a given signature

• Implements a while(1) loop

– never stops executing until explicitly shut down via OSTaskDelete

• Has at least one blocking function call to allow other tasks to execute, 
otherwise it will prevent the execution of tasks with a lower priority

void task(void *pTaskArg){

while(1){

OSTimeDly(5);

} // here be dragons

never stops executing until explicitly shut down via OSTaskDelete



Rechnerstrukturen II

OS_STK stack[stacksize]; // declare stack of stacksize bytes

INT8U prio = 3; // declare task priority

void *pTaskArg = 0; // no task arguments used

OSInit(); // init OS

err8 = OSTaskCreate (

task, // pointer to task function

pTaskArg, // pointer to task arguments

&stack[stacksize – 1],// pointer to stack

prio); // task priority

OSStart(); // start the scheduler

Creating Tasks and Starting the Scheduler
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OS_STK stack[stacksize]; // declare stack of stacksize bytes

err8 = OSTaskCreate (

task, // pointer to task function

pTaskArg, // pointer to task arguments

&stack[stacksize – 1],// pointer to stack

prio); // task priority

OSStart(); // start the scheduler

Open Questions:

• How does a scheduler determine which task should run next?

• How does the scheduler start, stop and switch tasks, i.e. perform a context
switch?

• Why does each task need a stack?
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Task States (simplified)
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• Only tasks in the running and ready state may be chosen by the scheduler
for execution

• Waiting tasks are in a blocking function call, e.g. OSTimeDly or OSQPend, 
and have to wait for a condition to become ready

Task 
Waiting

Task 
Ready

Task 
Running

ISR 
Running

Unblocking function
call

Context Switch

Preemption

Blocking function
call

Enter Interrupt

Exit Interrupt
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Required Steps for Context Switches 

• Interrupt currently executing task

• Save the registers of the task to be suspended to memory

– Program counter (PC)

– processor status word (PSW)

– Registers

– Stack Pointer (SP)

• Restore the registers of the task to be resumed

• Resume execution

9



Rechnerstrukturen II

Task Control Block

• Task Control Blocks (OS_TCB) hold a task‘s state and parameters

10

typedef struct os_tcb {

struct os_tcb *OSTCBNext; // Pointer to next TCB in TCB list

struct os_tcb *OSTCBPrev; // Pointer to previous TCB in TCB list

INT8U OSTCBStat; // Task state

INT8U OSTCBPrio; // Task priority (0 == highest)

INT16U OSTCBDly; // Delay ticks or timeout when waiting

BOOLEAN OSTCBPendTO; // Flag indicating PEND timed out 

OS_STK *OSTCBStkPtr; // Pointer to current top of stack

…

} OS_TCB;

INT8U OSTCBStat; // Task state

INT8U OSTCBPrio; // Task priority (0 == highest)

INT16U OSTCBDly; // Delay ticks or timeout when waiting

BOOLEAN OSTCBPendTO; // Flag indicating PEND timed out 

OS_STK *OSTCBStkPtr; // Pointer to current top of stack
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Performing a Context Switch (Preconditions)
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Performing a Context Switch (Saving Context)
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Performing a Context Switch (Restoring Context)
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Context Switch Pseudo-Code

• Implemented as Software-Interrupt

– Calling ISR automatically pushes PSW and PC to stack

– Returning from ISR automatically pops PSW and PC from stack

• Remaining part implemented in ISR

– Platform-dependent implementation

– Usually written in assembly

14

PUSH R1, R2, R3, R4 onto the current stack;

OSTCBCur->OSTCBStkPtr = SP;

OSTCBCur = OSTCBHighRdy;

SP = OSTCBCur->OSTCBStkPtr;

POP R4, R3, R2, R1 from the new stack;

Execute „return from interrupt“ instruction
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Determining highest priority task ready to run

• MicroC/OS-II is targeted at real-time applications

• Determining highest priority ready task has to fulfill timing requirements

– Time must not depend on the number of tasks → O(1)

15

How do we determine the highest priority task, which is ready 
to execute?
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Determining highest priority task ready to run

• Why not using a list of ready tasks sorted by priority?

→ Sorting or list parsing cannot be done in O(1)

→ Would not be feasible for real-time systems as execution time would 
depend on the number of tasks

16
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Determining highest priority task ready to run

• Each task ready to run is in a ready list consisting of two variables

– INT8U OSRdyGroup – Bit i is set to 1 if any bit in OSRdyTbl[i] is
set to 1

– INT8U OSRdyTbl[8] – Indicates which task in the group is ready to
run

17
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Making a task ready to run

• Task‘s priority is devided into 2 fields

– 3bits for bit position in OSRdyGroup and index to OSRdyTbl

– 3bits for bit position in OSRdyTbl[index]

18

OSRdyGrp |= OSMapTbl[prio >> 3]

OSRdyTbl[prio >> 3] |= OSMapTbl[prio & 0x07]

0 0 Y Y Y X X XTask Priority

Bit Position in OSRdyGroup and 
Index for OSRdyTbl[]

Bit Position in OSRdyTbl[Index]

• OSMapTbl[] is a precompiled table mapping bit position to bit mask

– e.g. OSMapTbl[2]maps to 0b00000100

• Code to make a task ready to run:
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Determining highest priority task ready to run

• Finding highest priority task ready to run through another precompiled
table
– OSUnMapTbl[bitmask] returns first bit that is one from a given

bitmask

– e.g. OSUnMapTbl[0b00101010] contains the value 1

19

y = OSUnMapTbl[OSRdyGrp];

x = OSUnMapTbl[OSRdyTbl[y]];

prio = (y << 3) + x;

• Finding highest priority task ready to run

• Some architectures directly support this technique as assembler

instructions

– „Count leading zeros“ -> clz

– „Count trailing zeros“ -> ctz
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OSUnMapTbl Example

20

INT8U  const OSUnMapTbl[256] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x00 to 0x0F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x10 to 0x1F  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x20 to 0x2F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x30 to 0x3F  */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x40 to 0x4F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x50 to 0x5F  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x60 to 0x6F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x70 to 0x7F  */

7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x80 to 0x8F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x90 to 0x9F  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xA0 to 0xAF  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xB0 to 0xBF  */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xC0 to 0xCF  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xD0 to 0xDF  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xE0 to 0xEF  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0        /* 0xF0 to 0xFF  */

};

Use OSUnMapTbl to find the lowest `1` in 36 

OSUnMapTbl[36] = 2

36 -> 0b00010100

INT8U  const OSUnMapTbl[256] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x00 to 0x0F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x10 to 0x1F  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x20 to 0x2F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x30 to 0x3F  */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x40 to 0x4F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x50 to 0x5F  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x60 to 0x6F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x70 to 0x7F  */

7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x80 to 0x8F  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x90 to 0x9F  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xA0 to 0xAF  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xB0 to 0xBF  */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xC0 to 0xCF  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xD0 to 0xDF  */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xE0 to 0xEF  */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0        /* 0xF0 to 0xFF  */

};
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COMMUNICATION

21
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Communication through Message Queues

• Message queues allow to

– send a message between two tasks
i.e. pass a pointer to a memory location

– manage messages in FIFO (ring buffer) and LIFO (stack buffer)

– receive messages in blocking or non-blocking way

22

Sending
Task

Receiving
Task
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Queue Communication

• Code for message queue usage

23

void *QMem[NumEntries]; // memory to manage queue content

OS_EVENT MsgQ; // pointer to queue

MsgQ = OSQCreate(QMem, NumEntries); // create queue

Create Message Queue:

void *data = &messageToSend; // pointer to data to send

err = OSQPost(MsgQ, data); // post pointer in queue

Sending Task:

void *data; // pointer to data to receive

data = OSQPend(MsgQ, timeout, &err); // get pointer to message

// blocking method

data = OSQAccept(MsgQ,&err); // get pointer to message

// non blocking method

Receiving Task:
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Blocking Receive from a Message Queue

• Pseudo-Code for blocking receive

24

void *OSQPend(pMsgQ, timeout, err){

if queue not empty

acquire pointer to message from buffer

decrement number of messages

return message pointer

else

set timeout for task in OS_TCB

register queue as waiting event in OS_TCB

call scheduler

acquire pointer to message from buffer

decrement number of messages

return message pointer

}

OSQAccept
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MEMORY MANAGEMENT

25
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Memory Management in MicroC/OS-II

• Many Microkernels do not provide dynamic memory allocation, i.e. no 
malloc()

– not required for many applications

– generally not real-time capable, because allocation time often 
depends on the history of previous allocations

• Dynamic allocation of static memory

26

OS_MEM *MemPartition; // memory partition

INT8U  Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate(Memory, 100, 64);

// create memory partition with

// 100 blocks of 64 byte each

Creating a Memory Partition:

void *memBlock; // pointer to memory block

memBlock = OMemGet(MemPartition, err); // retrieve memory block

OSMemPut(MemPartition, memBlock); // return memory block

Retrieving and Returning Memory Blocks:



Rechnerstrukturen II

Memory Management Structure

27

OSMemAddr

OSMemFreeList

OSMemBlksize

OSMemNBlks

OSMemNFree

OS_MEM *MemPartition; // memory partition

INT8U  Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate(Memory, 100, 64);

// create memory partition with

// 100 blocks of 64 byte each

OS_MEM *MemPartition INT8U Memory[][]

0



Rechnerstrukturen II

Properties of Memory Management

• Static block size prevents fragmentation

– no defragmentation required → makes real-time implementation 
easier

• Management of free blocks in list

– blocks are retrieved from beginning of list

– blocks are returned to beginning of list

→ O(1) allocation and deallocation

• Management of blocks within memory partition

→ Reduction of overhead

28



Rechnerstrukturen II

EXAMPLE
Using Tasks, Queues and Memory Management

29
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Example

30

Tx

Task

Rx

Task

OSMemAddr

OSMemFreeList

OSMemBlksize

OSMemNBlks

OSMemNFree

Message Memory Partition

Message Queue

OSMemGet()

write

message

OSQPost() OSQPend()

OSMemPut()
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Summary

• What functionality does a microkernel do?

– Task Scheduling

– Interrupt Handling

– Provide Communication Primitives

– Provide Synchronization Primitives

– Memory Management

– Provide Timebase

• How does scheduling in a microkernel work?

– Performing a context switch

– Determining highest priority task in O(1)

• Code examples on how to use a microkernel

– Writing and starting tasks

– Creating and using message queues

– Creating and using memory partitions

31


