
Rechnerstrukturen II

Functional Architectures

Structure and Mechanisms of the MicroC/OS-II
Microkernel

1

NOTE:

Some aspects are specific to MicroC/OS-II and are implemented
differently in other microkernels

Rechnerstrukturen II

Integrating different functionality on a processor

• Different applications executing on the same processor may

– Cause resource conflicts

• CPU time

• Memory

• Peripherals

• …

– Require arbitration for these conflicts

• Scheduler

• Memory Management

• Semaphores

• …

• Often these conflicts are resolved by an operating system or runtime
environment

2

Rechnerstrukturen II

• Task Scheduling

• Interrupt Handling

• Provide Communication Primitives

• Provide Synchronization Primitives

• Memory Management

• Provide Timebase

„The kernel is the part of a multitasking system responsible for management
of tasks (i.e., for managing the CPU‘s time) and communication between
tasks.“ MicroC/OS-II – The Real-Time Kernel

3

What does a microkernel do?

Rechnerstrukturen II

SCHEDULING

4

Rechnerstrukturen II

Task Scheduling

„A task, also called thread, is a simple program that thinks it has the CPU all

to itself.“ MicroC/OS-II – The Real-Time Kernel

„The scheduler, also called the dispatcher, is the part of the kernel responsible

for determining which task runs next.“ MicroC/OS-II – The Real-Time Kernel

5

CPU

Task 1 Task 2 Task n

Scheduler

Rechnerstrukturen II

void task(void *pTaskArg){

while(1){

OSTimeDly(5);

// do something periodically

}

} // here be dragons

Writing a task in MicroC/OS-II

• Writing a task

6

• A task is a C function

– needs to have a given signature

• Implements a while(1) loop

– never stops executing until explicitly shut down via OSTaskDelete

• Has at least one blocking function call to allow other tasks to execute,
otherwise it will prevent the execution of tasks with a lower priority

void task(void *pTaskArg){

while(1){

OSTimeDly(5);

} // here be dragons

never stops executing until explicitly shut down via OSTaskDelete

Rechnerstrukturen II

OS_STK stack[stacksize]; // declare stack of stacksize bytes

INT8U prio = 3; // declare task priority

void *pTaskArg = 0; // no task arguments used

OSInit(); // init OS

err8 = OSTaskCreate (

task, // pointer to task function

pTaskArg, // pointer to task arguments

&stack[stacksize – 1],// pointer to stack

prio); // task priority

OSStart(); // start the scheduler

Creating Tasks and Starting the Scheduler

7

OS_STK stack[stacksize]; // declare stack of stacksize bytes

err8 = OSTaskCreate (

task, // pointer to task function

pTaskArg, // pointer to task arguments

&stack[stacksize – 1],// pointer to stack

prio); // task priority

OSStart(); // start the scheduler

Open Questions:

• How does a scheduler determine which task should run next?

• How does the scheduler start, stop and switch tasks, i.e. perform a context
switch?

• Why does each task need a stack?

Rechnerstrukturen II

Task States (simplified)

8

• Only tasks in the running and ready state may be chosen by the scheduler
for execution

• Waiting tasks are in a blocking function call, e.g. OSTimeDly or OSQPend,
and have to wait for a condition to become ready

Task
Waiting

Task
Ready

Task
Running

ISR
Running

Unblocking function
call

Context Switch

Preemption

Blocking function
call

Enter Interrupt

Exit Interrupt

Rechnerstrukturen II

Required Steps for Context Switches

• Interrupt currently executing task

• Save the registers of the task to be suspended to memory

– Program counter (PC)

– processor status word (PSW)

– Registers

– Stack Pointer (SP)

• Restore the registers of the task to be resumed

• Resume execution

9

Rechnerstrukturen II

Task Control Block

• Task Control Blocks (OS_TCB) hold a task‘s state and parameters

10

typedef struct os_tcb {

struct os_tcb *OSTCBNext; // Pointer to next TCB in TCB list

struct os_tcb *OSTCBPrev; // Pointer to previous TCB in TCB list

INT8U OSTCBStat; // Task state

INT8U OSTCBPrio; // Task priority (0 == highest)

INT16U OSTCBDly; // Delay ticks or timeout when waiting

BOOLEAN OSTCBPendTO; // Flag indicating PEND timed out

OS_STK *OSTCBStkPtr; // Pointer to current top of stack

…

} OS_TCB;

INT8U OSTCBStat; // Task state

INT8U OSTCBPrio; // Task priority (0 == highest)

INT16U OSTCBDly; // Delay ticks or timeout when waiting

BOOLEAN OSTCBPendTO; // Flag indicating PEND timed out

OS_STK *OSTCBStkPtr; // Pointer to current top of stack

Rechnerstrukturen II

Performing a Context Switch (Preconditions)

11

OS_TCB

Low Priority Task High Priority Task

OSTCBCur

OS_TCB

OSHighRdy

R4‘
R3‘
R2‘
R1‘
PC‘

PSW‘

Low Memory

High Memory

Low Memory

High Memory

Stack
Growth

R4
R3
R2
R1

PC

PSW

SP

StackPtr

CPU

StackPtr

Rechnerstrukturen II

Performing a Context Switch (Saving Context)

12

OS_TCB

Low Priority Task High Priority Task

OSTCBCur

OS_TCB

OSHighRdy

R4‘
R3‘
R2‘
R1‘
PC‘

PSW‘

Low Memory

High Memory

R4
R3
R2
R1
PC

PSW

Low Memory

High Memory

Stack
Growth

R4
R3
R2
R1

PC

PSW

SP

StackPtr

CPU

StackPtr

Rechnerstrukturen II

Performing a Context Switch (Restoring Context)

13

OS_TCB

Low Priority Task High Priority Task

OSTCBCur

OS_TCB

OSHighRdy

R4‘
R3‘
R2‘
R1‘
PC‘

PSW‘

Low Memory

High Memory

R4
R3
R2
R1
PC

PSW

Low Memory

High Memory

Stack
Growth

R4
R3
R2
R1

PC

PSW

SP

StackPtr

CPU

StackPtr
OSTCBCur

R4‘
R3‘
R2‘
R1‘

PC‘

PSW‘

Rechnerstrukturen II

Context Switch Pseudo-Code

• Implemented as Software-Interrupt

– Calling ISR automatically pushes PSW and PC to stack

– Returning from ISR automatically pops PSW and PC from stack

• Remaining part implemented in ISR

– Platform-dependent implementation

– Usually written in assembly

14

PUSH R1, R2, R3, R4 onto the current stack;

OSTCBCur->OSTCBStkPtr = SP;

OSTCBCur = OSTCBHighRdy;

SP = OSTCBCur->OSTCBStkPtr;

POP R4, R3, R2, R1 from the new stack;

Execute „return from interrupt“ instruction

Rechnerstrukturen II

Determining highest priority task ready to run

• MicroC/OS-II is targeted at real-time applications

• Determining highest priority ready task has to fulfill timing requirements

– Time must not depend on the number of tasks → O(1)

15

How do we determine the highest priority task, which is ready
to execute?

Rechnerstrukturen II

Determining highest priority task ready to run

• Why not using a list of ready tasks sorted by priority?

→ Sorting or list parsing cannot be done in O(1)

→ Would not be feasible for real-time systems as execution time would
depend on the number of tasks

16

Rechnerstrukturen II

Determining highest priority task ready to run

• Each task ready to run is in a ready list consisting of two variables

– INT8U OSRdyGroup – Bit i is set to 1 if any bit in OSRdyTbl[i] is
set to 1

– INT8U OSRdyTbl[8] – Indicates which task in the group is ready to
run

17

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8

23 22 21 20 19 18 17 16

31 30 29 28 27 26 25 24

39 38 37 36 35 34 33 32

47 46 45 44 43 42 41 40

55 54 53 52 51 50 49 48

63 62 61 60 59 58 57 56

7 6 5 4 3 2 1 0

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

OSRdyTbl[8]
OSRdyGroup

Task Priority

Highest Priority

Lowest Priority

Rechnerstrukturen II

Making a task ready to run

• Task‘s priority is devided into 2 fields

– 3bits for bit position in OSRdyGroup and index to OSRdyTbl

– 3bits for bit position in OSRdyTbl[index]

18

OSRdyGrp |= OSMapTbl[prio >> 3]

OSRdyTbl[prio >> 3] |= OSMapTbl[prio & 0x07]

0 0 Y Y Y X X XTask Priority

Bit Position in OSRdyGroup and
Index for OSRdyTbl[]

Bit Position in OSRdyTbl[Index]

• OSMapTbl[] is a precompiled table mapping bit position to bit mask

– e.g. OSMapTbl[2]maps to 0b00000100

• Code to make a task ready to run:

Rechnerstrukturen II

Determining highest priority task ready to run

• Finding highest priority task ready to run through another precompiled
table
– OSUnMapTbl[bitmask] returns first bit that is one from a given

bitmask

– e.g. OSUnMapTbl[0b00101010] contains the value 1

19

y = OSUnMapTbl[OSRdyGrp];

x = OSUnMapTbl[OSRdyTbl[y]];

prio = (y << 3) + x;

• Finding highest priority task ready to run

• Some architectures directly support this technique as assembler

instructions

– „Count leading zeros“ -> clz

– „Count trailing zeros“ -> ctz

Rechnerstrukturen II

OSUnMapTbl Example

20

INT8U const OSUnMapTbl[256] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x00 to 0x0F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x10 to 0x1F */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x20 to 0x2F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x30 to 0x3F */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x40 to 0x4F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x50 to 0x5F */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x60 to 0x6F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x70 to 0x7F */

7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x80 to 0x8F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x90 to 0x9F */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xA0 to 0xAF */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xB0 to 0xBF */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xC0 to 0xCF */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xD0 to 0xDF */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xE0 to 0xEF */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 /* 0xF0 to 0xFF */

};

Use OSUnMapTbl to find the lowest `1` in 36

OSUnMapTbl[36] = 2

36 -> 0b00010100

INT8U const OSUnMapTbl[256] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x00 to 0x0F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x10 to 0x1F */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x20 to 0x2F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x30 to 0x3F */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x40 to 0x4F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x50 to 0x5F */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x60 to 0x6F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x70 to 0x7F */

7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x80 to 0x8F */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x90 to 0x9F */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xA0 to 0xAF */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xB0 to 0xBF */

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xC0 to 0xCF */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xD0 to 0xDF */

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xE0 to 0xEF */

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 /* 0xF0 to 0xFF */

};

Rechnerstrukturen II

COMMUNICATION

21

Rechnerstrukturen II

Communication through Message Queues

• Message queues allow to

– send a message between two tasks
i.e. pass a pointer to a memory location

– manage messages in FIFO (ring buffer) and LIFO (stack buffer)

– receive messages in blocking or non-blocking way

22

Sending
Task

Receiving
Task

Rechnerstrukturen II

Queue Communication

• Code for message queue usage

23

void *QMem[NumEntries]; // memory to manage queue content

OS_EVENT MsgQ; // pointer to queue

MsgQ = OSQCreate(QMem, NumEntries); // create queue

Create Message Queue:

void *data = &messageToSend; // pointer to data to send

err = OSQPost(MsgQ, data); // post pointer in queue

Sending Task:

void *data; // pointer to data to receive

data = OSQPend(MsgQ, timeout, &err); // get pointer to message

// blocking method

data = OSQAccept(MsgQ,&err); // get pointer to message

// non blocking method

Receiving Task:

Rechnerstrukturen II

Blocking Receive from a Message Queue

• Pseudo-Code for blocking receive

24

void *OSQPend(pMsgQ, timeout, err){

if queue not empty

acquire pointer to message from buffer

decrement number of messages

return message pointer

else

set timeout for task in OS_TCB

register queue as waiting event in OS_TCB

call scheduler

acquire pointer to message from buffer

decrement number of messages

return message pointer

}

OSQAccept

Rechnerstrukturen II

MEMORY MANAGEMENT

25

Rechnerstrukturen II

Memory Management in MicroC/OS-II

• Many Microkernels do not provide dynamic memory allocation, i.e. no
malloc()

– not required for many applications

– generally not real-time capable, because allocation time often
depends on the history of previous allocations

• Dynamic allocation of static memory

26

OS_MEM *MemPartition; // memory partition

INT8U Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate(Memory, 100, 64);

// create memory partition with

// 100 blocks of 64 byte each

Creating a Memory Partition:

void *memBlock; // pointer to memory block

memBlock = OMemGet(MemPartition, err); // retrieve memory block

OSMemPut(MemPartition, memBlock); // return memory block

Retrieving and Returning Memory Blocks:

Rechnerstrukturen II

Memory Management Structure

27

OSMemAddr

OSMemFreeList

OSMemBlksize

OSMemNBlks

OSMemNFree

OS_MEM *MemPartition; // memory partition

INT8U Memory[100][64]; // 6400 bytes of memory

MemPartition = OSMemCreate(Memory, 100, 64);

// create memory partition with

// 100 blocks of 64 byte each

OS_MEM *MemPartition INT8U Memory[][]

0

Rechnerstrukturen II

Properties of Memory Management

• Static block size prevents fragmentation

– no defragmentation required → makes real-time implementation
easier

• Management of free blocks in list

– blocks are retrieved from beginning of list

– blocks are returned to beginning of list

→ O(1) allocation and deallocation

• Management of blocks within memory partition

→ Reduction of overhead

28

Rechnerstrukturen II

EXAMPLE
Using Tasks, Queues and Memory Management

29

Rechnerstrukturen II

Example

30

Tx

Task

Rx

Task

OSMemAddr

OSMemFreeList

OSMemBlksize

OSMemNBlks

OSMemNFree

Message Memory Partition

Message Queue

OSMemGet()

write

message

OSQPost() OSQPend()

OSMemPut()

Rechnerstrukturen II

Summary

• What functionality does a microkernel do?

– Task Scheduling

– Interrupt Handling

– Provide Communication Primitives

– Provide Synchronization Primitives

– Memory Management

– Provide Timebase

• How does scheduling in a microkernel work?

– Performing a context switch

– Determining highest priority task in O(1)

• Code examples on how to use a microkernel

– Writing and starting tasks

– Creating and using message queues

– Creating and using memory partitions

31

