

Public-Key Cryptography

Vorlesung “Einführung in die IT-Sicherheit”

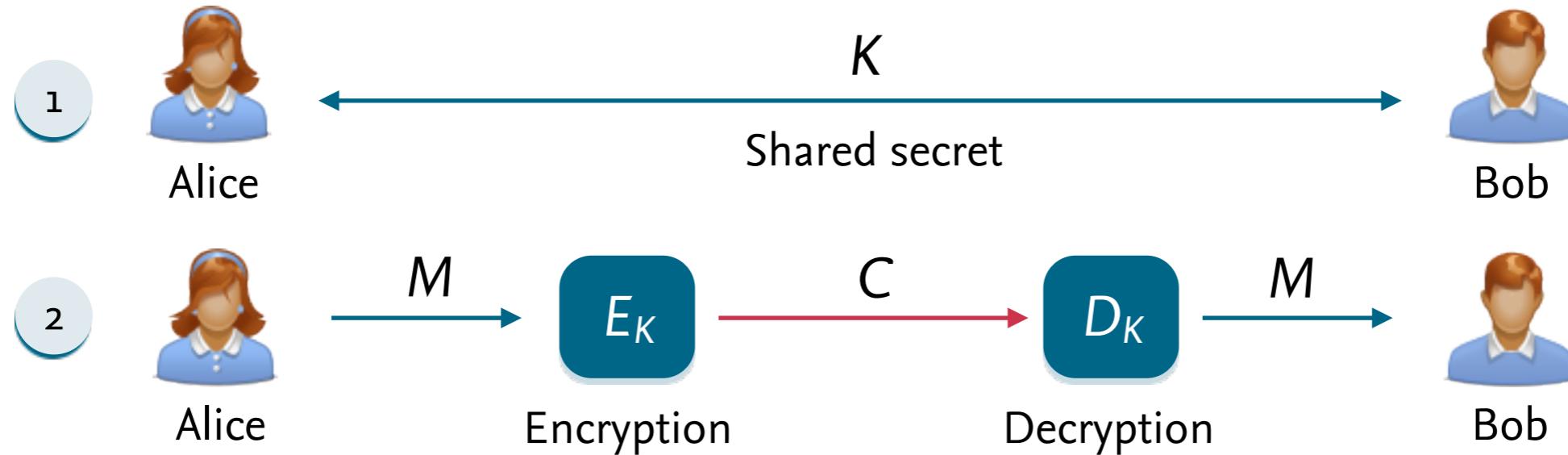
Prof. Dr. Konrad Rieck

Part
#1

Overview

- **Topic of the unit**
 - Public-key Cryptography
- **Parts of the unit**
 - Part #1: Asymmetric cryptosystems
 - Part #2: Mathematical Prerequisites
 - Part #3: Rivest-Shamir-Adleman algorithm
 - Part #4: Diffie-Hellman key exchange

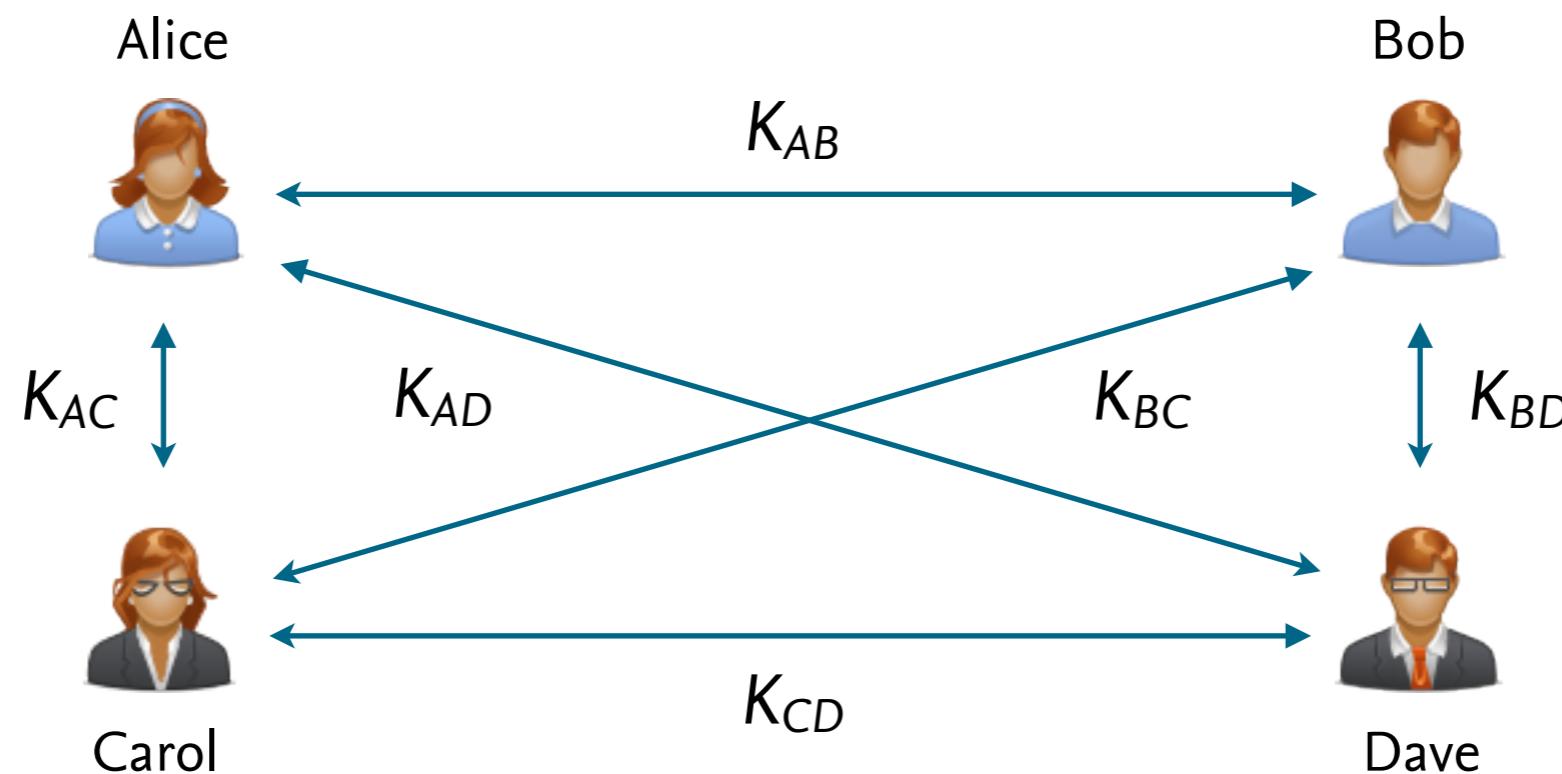
Problem: Key Exchange



- **Paradox situation for symmetric cryptosystems**
 - Secure key exchange needed for **secure** communication
 - Communication between unknown parties not possible

Multi-party Key Exchange

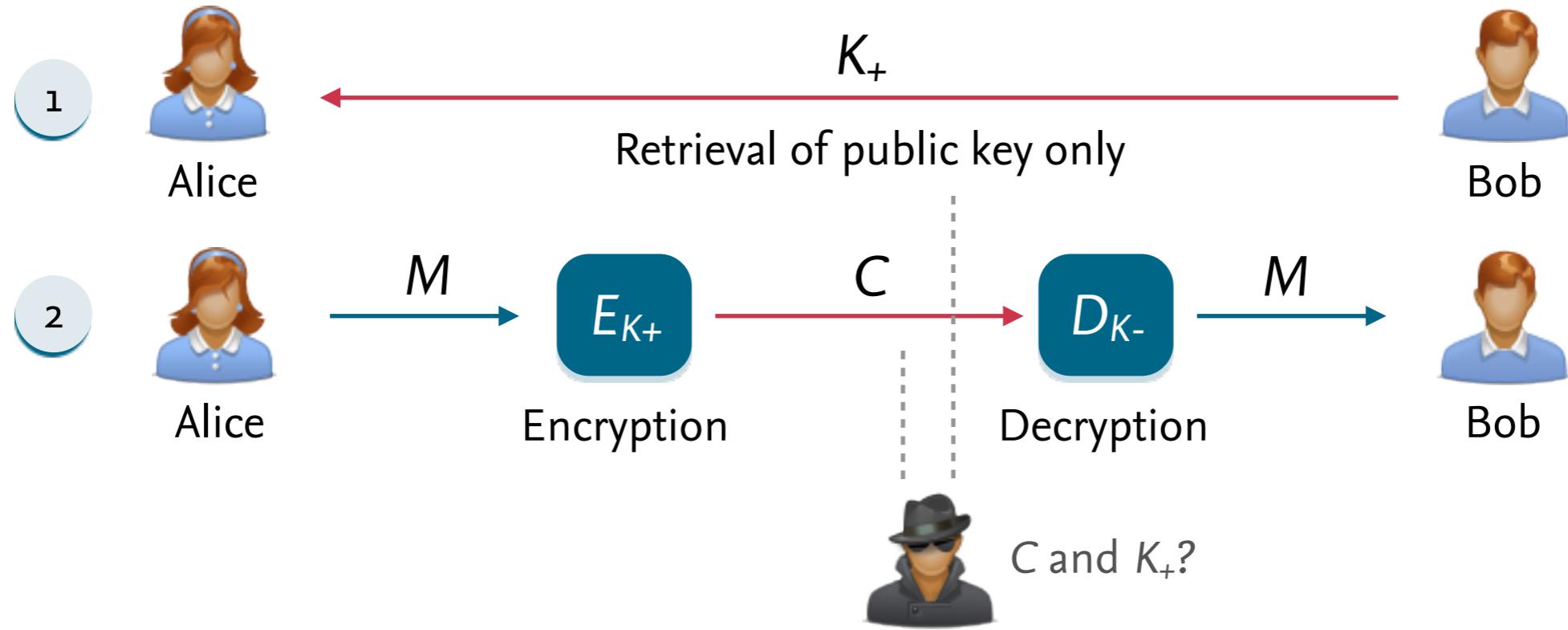
- Involved multi-party key exchange with symmetric keys
 - Quadratic growths: n parties $\rightarrow (n^2 - n) / 2$ keys
 - Problem rooted in symmetry of cryptosystem (shared keys)



Asymmetric Keys

- Solution: Two types of keys
 - Public key K_+ = enables encryption but no decryption
 - Private key K_- = used for decryption only
 - Hard to deduce private from public key
- ... similar to a classic mailbox

Key Exchange with Public Keys

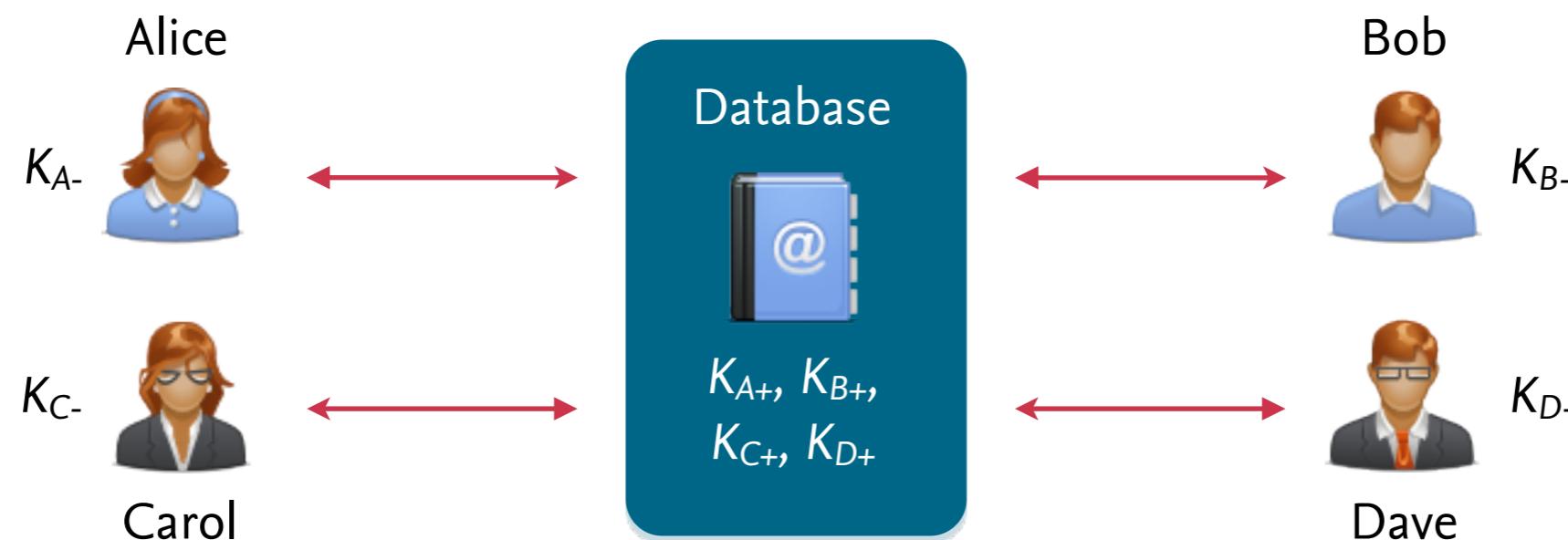


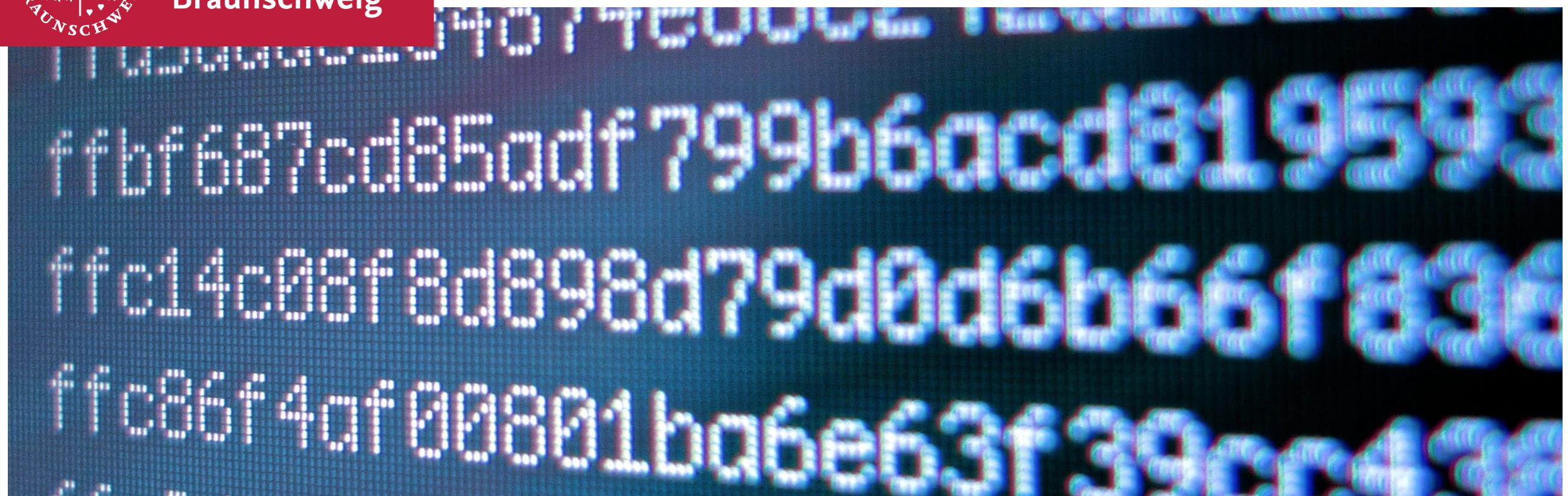
- **Asymmetric Cipher**

- K_+ = public key of Bob K_- = private key of Bob
- No exchange of shared key necessary

Key Exchange with Public Keys

- **Scalable communication with multiple parties**
 - Linear number of exchanges: n parties $\rightarrow n$ public keys
 - Real-world systems with millions of keys (e.g. PGP)





Public-Key Cryptography

Vorlesung “Einführung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck

Part
#2

Overview

- **Topic of the unit**
 - Public-key Cryptography
- **Parts of the unit**
 - Part #1: Asymmetric cryptosystems
 - Part #2: Mathematical Prerequisites
 - Part #3: Rivest-Shamir-Adleman algorithm
 - Part #4: Diffie-Hellman key exchange

Trapdoor One-Way Functions

- **Trapdoor one-way function $F(x) = y$**
 - Given input x : **easy** to compute output y
 - Given output y : **hard** to compute input x
 - Given y and a secret: **easy** to compute x
- **Trapdoor basis for asymmetry**
 - Encryption with public key ~ Computing y
 - Decryption with private key ~ Computing x with secret
- ... we need some math for these trapdoors



Modular Arithmetic

- **Modulo operation**
 - Operator determining the remainder of a division
 - For two integers a and n (**modulus**), we have
$$a \bmod n = b \quad \text{if } a = b + kn$$
- **Modular arithmetic**
 - Arithmetic with integer numbers under a given modulus
 - Examples:
 - $11 \equiv 6 \equiv 1 \pmod{5}$
 - $3 + 4 \equiv 2 \pmod{5}$
 - $3 \cdot 5 \equiv 0 \pmod{5}$
 - $2^3 \equiv 3 \pmod{5}$

More Math

- **Greatest common divisor:** $\gcd(a,b) = c$
 - Largest integer c dividing a and b without remainder
 - Computation using factorization or Euclidean algorithm
 - Numbers a and b co-prime if $\gcd(a,b) = 1$
- **Modular multiplicative inverse:** $a \cdot a^{-1} \equiv 1 \pmod{m}$
 - Inverse for modular multiplication
 - Computation using extended Euclidean algorithm
 - Inverse exists only if a and m co-prime

Hard Problems

- Trapdoor build around a mathematical problem
 - Problem hard to solve but easy to verify (asymmetry)
 - No polynomial-time algorithm for solution known
 - Examples: Integer factorization and discrete logarithm

› Integer factorization

Given an integer n , find its m prime factors

$$n = p_1 \cdot p_2 \cdots p_m \text{ with } p_i \in \mathbb{P}$$

Example: $n = 4711$ Let's see... $p_1 = 7, p_2 = 673$

Hard Problems (cont)

- Trapdoor build around a mathematical problem
 - Problem hard to solve but easy to verify (asymmetry)
 - No polynomial-time algorithm for solution known
 - Examples: Integer factorization and discrete logarithm

› Discrete logarithm

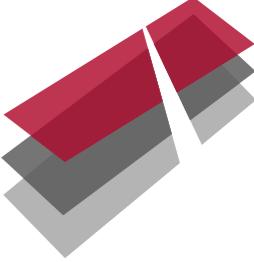
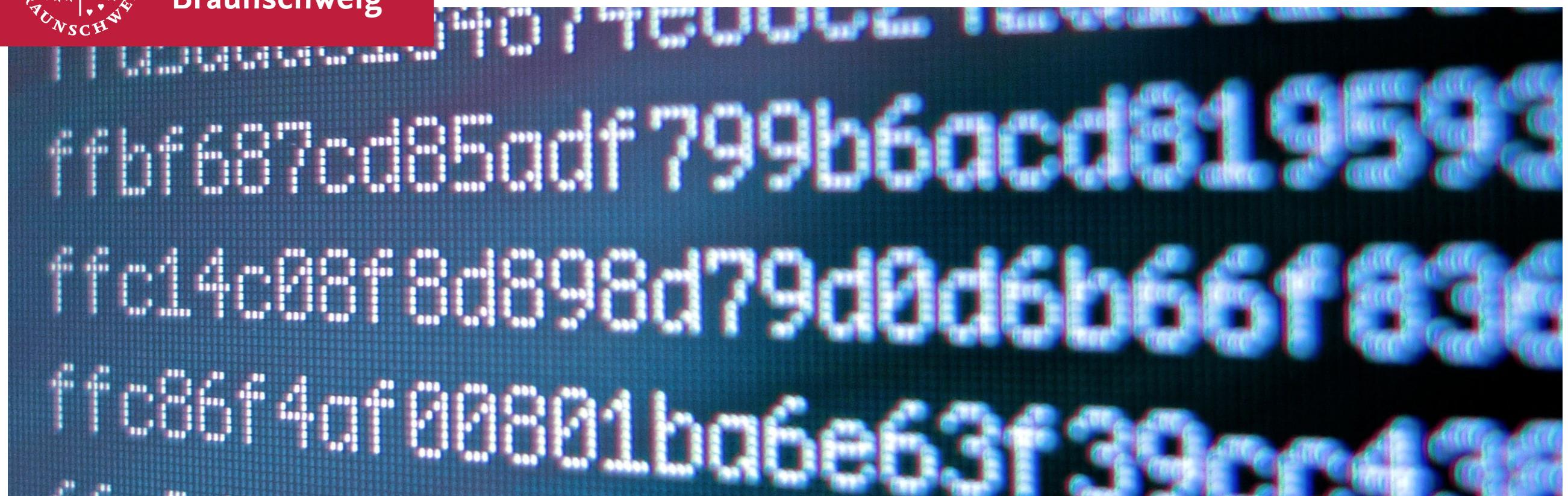
Given integers g, p, b , find an integer a such that

$$g^a \equiv b \pmod{p}$$

Example: $2^a \equiv 1 \pmod{5}$ Let's see... $a = 4$

Asymmetric Algorithms

- **Diffie-Hellman (DH) Key Exchange**
 - Developed by Diffie and Hellman in 1976
 - Based on difficulty of computing discrete logarithms
- **RSA Algorithm (Encryption & Signing)**
 - Developed by Rivest, Shamir and Adleman in 1978
 - Based on difficulty of integer factorization
- **Elgamal Schemes (Encryption & Signing)**
 - Developed by Elgamal in 1985
 - Based on difficulty of computing discrete logarithms



Public-Key Cryptography

Vorlesung “Einführung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck

Part
#3

Overview

- **Topic of the unit**
 - Public-key Cryptography
- **Parts of the unit**
 - Part #1: Asymmetric cryptosystems
 - Part #2: Mathematical Prerequisites
 - Part #3: Rivest-Shamir-Adleman algorithm
 - Part #4: Diffie-Hellman key exchange

RSA Algorithm

- **Standard algorithm for public-key cryptography**
 - Developed by Rivest, Shamir and Adleman in 1978
 - Based on difficulty of factorizing large integers

› Key generation

Choose random primes p, q and compute $n = p \cdot q$

Compute Euler function $\varphi(n) = (p - 1)(q - 1)$

Choose random encryption key e with $\gcd(e, \varphi(n)) = 1$

Compute decryption key $d = e^{-1} \bmod \varphi(n)$

RSA Algorithm (cont)

- **Standard algorithm for public-key cryptography**

- Developed by Rivest, Shamir and Adleman in 1978
- Based on difficulty of factorizing large integers

- **Encryption with public key e, n**

Encrypt message m to ciphertext $c = m^e \bmod n$

- **Decryption with private key d**

Decrypt ciphertext c to message $m = c^d \bmod n$

RSA Algorithm (cont)

- Why does RSA work?

$$c^d \equiv m^{ed} \equiv m^{1+k\varphi(n)} \equiv m \cdot m^{k\varphi(n)} \equiv m \cdot 1 \pmod{n}$$

Substitute c

That's simple

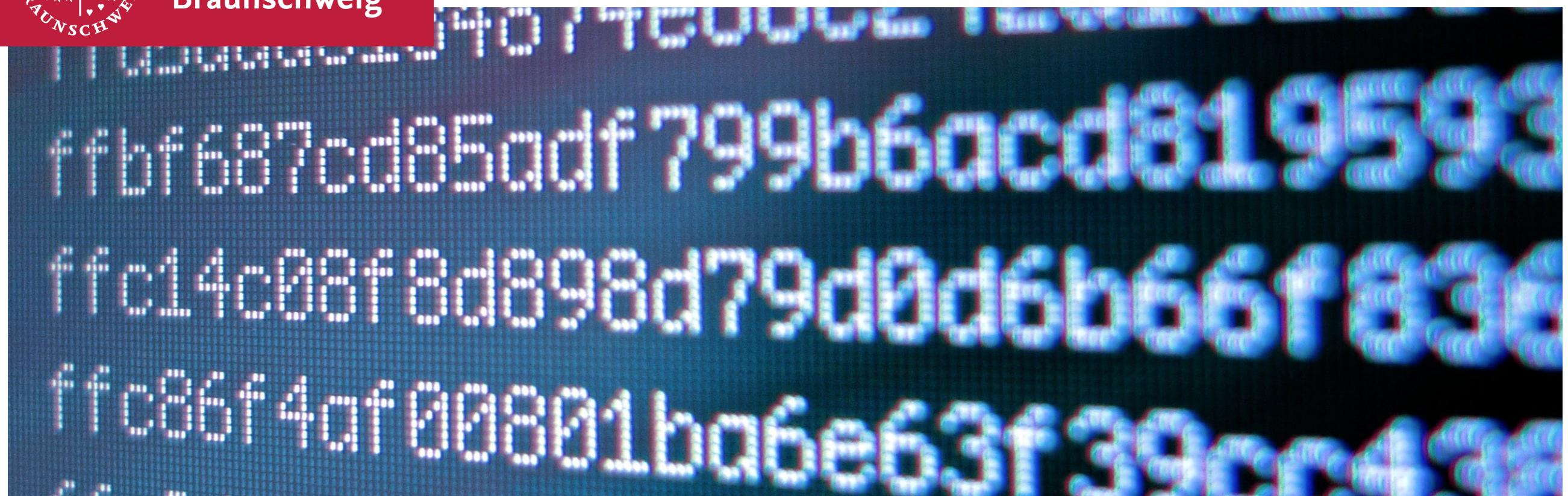
Euler's theorem

$$d = e^{-1} \pmod{\varphi(n)}$$



Security of RSA

- **Main attack vectors against RSA**
 - Decrypting ciphertext $c = m^e \bmod n$
→ **Difficulty of computing roots in modular arithmetic**
 - Deriving private key $d = e^{-1} \bmod \varphi(n)$
→ **Difficulty of computing prime factors from n**
- **Security depends on size of prime numbers**
 - Factorization of numbers up to 1024 bits feasible
 - Keys with 4096 and more bits considered secure



Public-Key Cryptography

Vorlesung “Einführung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck

Part
#4

Overview

- **Topic of the unit**
 - Public-key Cryptography
- **Parts of the unit**
 - Part #1: Asymmetric cryptosystems
 - Part #2: Mathematical Prerequisites
 - Part #3: Rivest-Shamir-Adleman algorithm
 - Part #4: Diffie-Hellman key exchange

Diffie-Hellman Key Exchange

- **Public-key algorithm for secure key exchange**
 - Developed by Diffie and Hellman in 1976
 - Based on difficulty of computing discrete logarithms

› Initialization

Alice and Bob agree on prime n and generator g

For all $0 < b < n$ there is an x such that $g^x \bmod n = b$

› Generation of secrets

Alice select random number x and sets $X = g^x \bmod n$

Bob selects random number y and sets $Y = g^y \bmod n$

Diffie-Hellman Key Exchange (cont)

- **Public-key algorithm for secure key exchange**
 - Developed by Diffie and Hellman in 1976
 - Based on difficulty of computing discrete logarithms

› Key exchange

Alice sends X to Bob and Bob sends Y to Alice

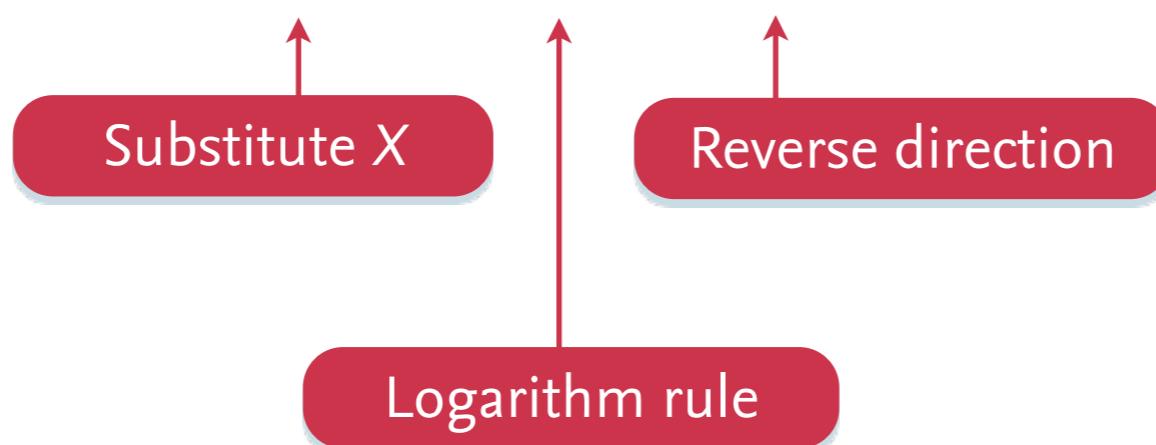
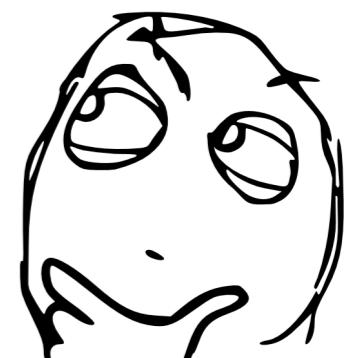
Alice computes shared key $k = Y^x \bmod n$

Bob computes shared key $k = X^y \bmod n$

Diffie-Hellman Key Exchange (cont)

- Why does the key exchange work?

$$k \equiv X^y \equiv g^{x^y} \equiv g^{x \cdot y} \equiv g^{y^x} \equiv Y^x \pmod{n}$$



Security of Diffie-Hellman

- **Main attack vectors against key exchange**
 - Determining shared $k = g^{xy} \bmod n$
→ Difficulty of deriving g^{xy} from g^x and $g^y \bmod n$
 - Deriving secret number $x = \log_g(X) \bmod n$
→ Difficulty of computing discrete logarithms
- **Security depends on size of X and Y**
 - Difficulty similar to integer factorization
 - Numbers with 4096 and more bits considered secure

Summary

Security and Hard Problems

- **Security of symmetric-key algorithms \rightsquigarrow complexity**
 - Diffusion and confusion through involved bit operations
- **Security of asymmetric-key algorithms \rightsquigarrow hard problems**
 - Trapdoor property based on hard mathematical problems
 - No polynomial-time solutions *known today*
- **Will these mathematical problems stay hard?**
 - ... advances in quantum computing
 - ... novel polynomial-time algorithms (or even: $P = NP?$)

Summary

- **Public-key cryptography**
 - Asymmetric keys → secure key exchange
 - Scalable encryption with multiple parties
- **Security based on trapdoor one-way functions**
 - Integer factorization → RSA algorithm
 - Discrete logarithm → Diffie-Hellman key exchange
 - Security depends on large key sizes (> 3000 bit)

