o Vi Institute of q

52| a2 Technisch ,
5*25& %z echniscne System Security

> Universitat

v é Ig
SC

1 1 R 4°. 1%
3 :
1§ WS o' g i

57 u::u:1f799b60c081’3?93*213 ;,;,

—

-
--.'-

-
-

- -

- -

Web Security
Vorlesung “Einflihrung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck & Prof. Dr. Martin Johns

Overview

o Topic of the unit
- Web Security

e Parts of the unit

. Part #1: Server-side attacks

. Part #2: Web sessions

- Part #3: Client-side attacks

WILz

oM e)
gﬁ}; ‘3% Technische
< 23 %z

S 2.8 > Universitat Page 2
] 5

A% 25 Braunschweig _
Onscn® Institute of
System Security

‘Q

Web Applications

o Applications implemented using “Web technologies”

- Client/server model using HTTP for communication
- Code at client: HTML, JavaScript, Flash, ...
- Code at server: PHP, JSP, ASP, ... and SQL

« Some examples

- Facebook, Ebay, Youtube, ... it’s just great!

— HTTP request

HTTP response
Web browser Web server Database

SWILzy

oM e .
g‘% ‘3% Technische
< 23 %z

Uf?‘i %> Universitat Page 3
A% %S Braunschweig :
SR Institute of

System Security

Security Problems

All typical security problems
Weak cryptography; weak authentication

Faulty and incorrect implementations

Problems specific to web applications:
Client: Cross-site scripting and related attacks

Server: Code injection and path traversal

HTTP request
) Q a
< —

HTTP response

Web browser Web server Database
T .
‘?f?,é %ﬁz Technische -
S ac|*S 5 Universitit age 4
Py j‘:é’ Braunschweig

“nscw Institute of
System Security

SQL Injection

o A simple example: password check in PHP

¢name = $ GET ["name"];

$password = $_GET ["password"];

$query = "SELECT *x FROM users WHERE name = '$name’
AND password = '$password'";

o Let’s send a HTTP request ...

Untitled

Q. foo.com/?name=steve&password=secret

SWILzy

e

5”3& _%»_z Technische
< 23|
5

S ac|*%> Universitat Page 5
3;*:3’5 *<5 Braunschweig , ‘
R Institute of

System Security

http://foo.com/?name=steve&password=secret

SQL Injection

o A simple example: password check in PHP

¢name = $ _GET ["name"];

$password = $_GET ["password"];

$query = "SELECT * FROM users WHERE name = '$name’
AND password = '$password'";

o Let’s send a HTTP request ...

$name = "steve'";
$password = '"secret",;
$query = "SELECT * FROM users WHERE name = 'steve'

AND password = 'secret'";

SWILzy

oM e .
5”3& ‘3% Technische
< 23 %z

Uf?‘i &> Universitat Page 6
A% %S Braunschweig -
SR Institute of

System Security

SQL Injection

o A simple example: password check in PHP

¢name = $ _GET ["name"];

$password = $_GET ["password"];

$query = "SELECT * FROM users WHERE name = '$name’
AND password = '$password'";

o Let’s send another HTTP request ...

Untitled

Q. foo.com/?name=steve&password=x'%200r%20‘1"'="1

SWILzy

e

g”% _%»_z Technische
< 23|
;

S ac|*%> Universitat Page 7
%,%i *<5 Braunschweig , ‘
R Institute of

System Security

SQL Injection

o A simple example: password check in PHP

¢name = $ _GET ["name"];

$password = $_GET ["password"];

$query = "SELECT * FROM users WHERE name = '$name’
AND password = '$password'";

o Let’s send another HTTP request ...

Condition is always true

$name = "steve", (password irrelevant)

$password = "x' or "1'="1";

$query = "SELECT * FROM users WHERE name = 'steve'
AND password = 'x' or '1'="'1"'"";

SWILzy

e

<P % .
j’};& %ﬁz Technische
X

oty > Universitat Page 8
A% %S Braunschweig -
oo Institute of

System Security

Impact & Defense

o Attack impact
- Information leakage (*; SELECT % FROM ...)
- Data manipulation (*; INSERT ... and *; DELETE ...)

- Code execution (depends on SQL interface of database)
. What is the problem? Insufficient validation of input data

e Countermeasures
- Escaping of control and syntax characters

- Prepared SQL statements (no mixture of data and code)

SWILzy

oM e .
g‘% ‘3% Technische
< 23 %z

Uf?‘i %> Universitat Page 9
A% %S Braunschweig :
SR Institute of

System Security

Remote Code Execution

» Another example: local helper program called via PHP

<?php
$data = $ _GET ["data"];
$output = shell _exec("cat "+ $data);
echo "<pre>$output</pre>";

>

o Let’s send a HTTP request ...

Untitled

Q, foo.com/?data=highscore.data

,\)IILIY

oM e)
5”3& ‘3% Technische
< 23 %z

:ﬁ > Universitat Page 10
»7A|% 45 Braunschweig -
SR Institute of

System Security

http://foo.com/?data=highscore.data

Remote Code Execution

» Another example: local helper program called via PHP

<?php
$data = $ GET ["data"];
$output = shell _exec("cat "+ $data);
echo "<pre>$output</pre>";

>

o Let’s send a HTTP request ...

<?php
$file = "highscores.data";
$output = shell_exec("cat highscores.data ");
echo "<pre>konrad: 13 points</pre>";

7>

SWILzy
3

g‘% 3t Technische
< LA|v
%

U*}i %> Universitat Page 11
27A|F45 Braunschweig _
gt Institute of

System Security

Remote Code Execution

» Another example: local helper program called via PHP

<?php
$data = $ _GET ["data"];
$output = shell _exec("cat "+ $data);
echo "<pre>$output</pre>";

>

o Let’s send another HTTP request ...

Untitled

Q. foo.com/?data=f00;%20rm%20-rf%20/

,\)IILIY

oM e)
:t?i ‘3% Technische
< 23 %z

Uﬁ %> Universitat Page 12
27A|F45 Braunschweig _
gt Institute of

System Security

http://foo.com/?data=

Remote Code Execution

» Another example: local helper program called via PHP

<?php
$data = $ _GET ["data"];
$output = shell _exec("cat "+ $data);
echo "<pre>$output</pre>";

>

o Let’s send another HTTP request ...

<?php
$data = "foo; rm -rf /",
$output = shell_exec("cat foo; rm —rf /");
echo "<pre>file not found</pre>",;

?> Execution of arbitrary
shell commands

SWILzy
b

g”to;g 3t Technische
< 2|
%

Uf?‘i %> Universitat Page 13
A% %S Braunschweig :
gt Institute of

System Security

Impact & Defense

o Attack impact
- Execution of arbitrary code on server system
- Privileges of user running web server (e.g. www)

- Attack variants using injected PHP or ASP code
. What is the problem? Insufficient validation of data again!

e Countermeasures
- Escaping of control and syntax characters

- No execution of shell commands from web applications

SWILzy

oM e .
g‘% ‘3% Technische
< A2 %2

:3‘; > Universitat Page 14
»7A|% 45 Braunschweig -
SR Institute of

System Security

Path Traversals

» Example: Access to local file of web application

Untitled

Q, foo.com/?file=highscore.data

o Potential break out from directory of web application

SWILzy

e

0y
Z}; %‘% Technische
S 282 Universitat
e AELR Braunschweig

v'é“’

v,
ONsct‘

Untitled
Q foo.com/?file=../etc/passwd
Untitled
Q foo.com/?file=../../etc/passwd
Untitled

Q foo.com/?file=..%2F..%2Fetc/passwd

Page 15

Institute of
System Security

-

Impact & Defense

o Attack impact
- Access to files outside the scope of the web application
- Potential access to configuration files and source code

- Combination with remote code execution (e.g. Nimda)
. What is the problem? Insufficient validation of data again!

e Countermeasures
- Sanitization and normalization of file paths

- Whitelisting of allowed files and directories

,«ILQ

oM e)
g‘% ‘3% Technische
< A2 %2

:3‘; » > Universitat Page 16
»7A|% 45 Braunschweig i
SR Institute of

System Security

Weird Code Injection

o Injection of code not limited to traditional user input

- Any type of input data potential source for attacks

« Example: SQL injection over RFID chips

z Prepares an RFID chip -
N ” k }
id="x’; DELETE FROM products;”

2 & = Reads RFID chip when in proximity -
¢ & o

i SELECT * FROM products WHERE id=$id

SWILzy

e

gﬁ}& ‘<% Technische : '
%%E Universitit Page 17 (Rieback et al., PERCOM 2006) ‘
% A7

.*s Braunschweig

7, v .
Onsond Institute of

System Security

What is wrong?

» Root cause of most vulnerabilities
- Dynamic construction of code using string operations

- Separation of code and data not enforced

« Dangerous code elements in strings

- SQL injection: " (termination of strings)
- Remote code execution ; (termination of commands)
- Path traversal ../ (move to upper directory)

o Several other attack surfaces: JSON, LDAP, XPATH injection

,\)IILQ

oM e)
g"% ‘3% Technische
< 23 %z

oty > Universitat Page 18
A% %S Braunschweig -
SR Institute of

System Security

Code vs. Data

o The developer’s view
$sql = “SELECT *x FROM users WHERE passwd = ‘“ + $pass + "'";

e The database’s view

$sql = “SELECT * FROM users WHERE passwd = ‘“ + $pass + "'";

o An attack mixing code and data

$sql = “SELECT x FROM users WHERE passwd = ‘x‘ or ‘1" = "1"";

WILz

(&) .vé’ .
5”% '3 Technische
< A2 %z

S ac|*%> Universitat Page 19
‘%,%i *#%s Braunschweig , ‘
SR Institute of

System Security

o Vi Institute of q

52| a2 Technisch ,
5*25& %z echniscne System Security

> Universitat

v é Ig
SC

1 1 R 4°. 1%
3 :
1§ WS o' g i

57 u::u:1f799b60c081’3?93*213 ;,;,

—

-
--.'-

-
-

- -

- -

Web Security
Vorlesung “Einflihrung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck & Prof. Dr. Martin Johns

Overview

o Topic of the unit
- Web Security

e Parts of the unit

. Part #1: Server-side attacks

. Part #2: Web sessions

- Part #3: Client-side attacks

WILz

oM e)
gﬁ}; ‘3% Technische
< 23 %z

S 2.8 > Universitat Page 21
] 5

A% 25 Braunschweig _
Onscn® Institute of
System Security

‘Q

Sessions in HTTP

o HTTP stateless by design
- Sessions prerequisite for online shopping, gaming, ...
- Web applications need to implement session tracking

- Session IDs track user activity across HTTP requests

o Three common implementations
& URL rewriting
2, Form-based session IDs

3 Cookies

,\)IILQ

oM e)
g‘% ‘3% Technische
< 23 %z

Uf?‘i %> Universitat Page 22
27A|F45 Braunschweig _
gt Institute of

System Security

URL Rewriting 2

e Session management using URL rewriting
- Session IDs automatically appended to URLs
- Developer needs to fix all URLs in application

- Problem: Leakage of ID, e.g. in HTTP referrer header

GET /shop.php?SESSIONID=0d3adc@d3b3 HTTP/1.1
Host: www.foobar.com
Referrer: http://www.foobar.com

User—-Agent: Firefox 3.1337 }]
Session ID in URL

GET /untrusted/webpage HTTP/1.1
Host: www.dangerous.com
Referrer: http://www.foobar.com/shop.php?SESSIONID=0d3adc@d3b3

User-Agent: Firefox 3.1337 !
Leakage in referrer

,\)IILQ

oV e .
“’3& '3 Technische I
‘éf‘% %E Universitat Page 23
7|%%5 Braunschweig :
o Institute of

»
System Security

Form-based Sessions IDs 2

» Session management using HTML forms
- Session IDs stored in hidden form fields
- Navigation of web application required to use forms
- Transport of session IDs in body of POST request

. Problem: back button of web browser

POST /shop.php HTTP/1.1
Host: www.foobar.com
Content-Type: application/x—www—form—-urlencoded

Content-Length: 43
Session ID in body

USER=john.doe&SESSIONID=0d3adc@d3b3

SWILzy

e

€
35 ‘32 Technische |
S%%E Universitat Page 24 ‘
L) & .
22 * A~ Braunschwei
Tep v s g Institute of

- System Security

Cookies 3

» Session management using cookies
- Persistent storage maintained by web browser
- Data set using HTTP headers or scripting, e.g. JavaScript

- Cookies automatically added for originating (sub-)domain

GET /shop/login.php HTTP/1.1
Host: www.foobar.com Request

HTTP/1.1 200 OK

Set-Cookie: 0d3adc@d3b3; path=/shop

GET /shop/order.php HTTP/1.1
Host: www.foobar.com

Cookie: 0d3adc@d3b3 Request it GaE e

,\NILQ

e

K>

S ' Technische
< 23| ¢ =
3

U*}i %> Universitat Page 25
A% %S Braunschweig :
gt Institute of

System Security

http://www.foobar.com
http://www.foobar.com

Sessions and Security

o Session IDs used for tracking authenticated users
- Login process marks sessions as authenticated

- Problem: Risk of a comprise if session ID leaks

» Securing session IDs

- Hard to guess IDs »Long and random strings

- Hard to eavesdrop IDs - Encrypted transport if possible

e Are we safe now ...

. ... client-side attacks may still expose session IDs

,\)IILQ

oM e)
g‘% ‘3% Technische
< 23 %z

]

S &> Universitat Page 26
%5 Braunschwei
T <& 8 Institute of

¥
System Security

o Vi Institute of q

52| a2 Technisch ,
5*25& %z echniscne System Security

> Universitat

v é Ig
SC

1 1 R 4°. 1%
3 :
1§ WS o' g i

57 u::u:1f799b60c081’3?93*213 ;,;,

—

-
--.'-

-
-

- -

- -

Web Security
Vorlesung “Einflihrung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck & Prof. Dr. Martin Johns

Overview

o Topic of the unit
- Web Security

e Parts of the unit

. Part #1: Server-side attacks

. Part #2: Web sessions

- Part #3: Client-side attacks

WILz

oM e)
gﬁ}; ‘3% Technische
< 23 %z

S 2|8 % Universitat Page 28
] 5

A% 25 Braunschweig _
Onscn® Institute of
System Security

‘Q

JavaScript

o JavaScript scripting language
- Introduced by Netscape in 1995 as ECMAScript

- Implemented in every modern web browser

» Powerful scripting interface
- Alteration of web pages

Access to URLs and form fields

Access and modification of cookies

Initiating of new HTTP requests

: : |
Execution of dynamic code WE ARE DOOMED!

,\)IILIY

oM e)
5”3& ‘3% Technische
< 23 %z

Uf?‘i %> Universitat Page 29
A% %S Braunschweig :
SR Institute of

System Security

Same-Origin Policy

 Main security measure for JavaScript
- Access restricted to elements from “same origin”

- Also applied to ActionScript (Flash) and CSS stuft

» Two elements share the same origin if
- ... the protocol is identical

. ... the host is identica

- ... the port is identica

https://www.mega-relaunch.com:31337/shop/order.php

Protocol Host Port

,\NILQ

e

Xy

S _%»_z Technische
< 2A|r
%

Uf?‘i > Universitat Page 30
A% %S Braunschweig -
T Institute of

System Security

Cross-site Scripting

» Cross-site Scripting (XSS)
- Injection of (JavaScript) code into webpages
- Bypass of same-origin policy due to injection

- Root-cause: display of insufficiently validated data

 Simple example

<?php

$user = $ GET ["user"];

echo "Welcome home, $user!';
?>

SWILzy

oM e .
g‘% ‘3% Technische
< A2 %2

U*}i %> Universitat Page 31
A% %S Braunschweig :
SR Institute of

System Security

Cross-site Scripting

» Cross-site Scripting (XSS)
- Injection of (JavaScript) code into webpages
- Bypass of same-origin policy due to injection

- Root-cause: display of insufficiently validated data

 Simple example

Untitled

Q, foo.com/?user=%3Cscript%3Ealert()%3C%2Fscript%3E

,\)IILQ

oM e)
“’35; ‘32 Technische
< 23 %z

S gc|¥»> Universitat Page 32
'%:35; *#s Braunschweig .
SR Institute of

- System Security

Cross-site Scripting

» Cross-site Scripting (XSS)
- Injection of (JavaScript) code into webpages
- Bypass of same-origin policy due to injection

- Root-cause: display of insufficiently validated data

 Simple example

<?php

$user = $ GET ["user"];

echo "Welcome home, <script=alert()</script>!";
>

SWILzy

oM e .
g‘% ‘3% Technische
< A2 %2

Uf?‘i S > Universitit Page 33
A% %S Braunschweig :
gt Institute of

System Security

Cross-site Scripting

» Cross-site Scripting (XSS)
- Injection of (JavaScript) code into webpages
- Bypass of same-origin policy due to injection

- Root-cause: display of insufficiently validated data

 Simple example

Untitled

s3C%2Fscript%3E

| JavaScript
undefined

SWILzy
b

g‘% 3% Technische
< 21| k¢ Z
%

S gc|¥»> Universitat Page 34
'%:35; *#s Braunschweig .
SR Institute of

- System Security

Capabilities of XSS

o Injection of JavaScript code = compromise of web browser

 Forgery of web content

- Attacker manipulates content on the web page

o Spoofing of login dialogues

- Attacker uses JavaScript code to phish login credentials

o Session and browser hijacking

. Attacker steals session IDs and acts as the user

 Further web-based attacks, e.g. JavaScript worms

SWILzy

oVo vr_&’(\
3 1K 1

%z Technische .
§ 2182 Universitit Page 35

33:%? {‘5’ Braunschweig Institute of ‘
s nstitute o

System Security

Entry Points and Types

XSS entry points see ha.ckers.org/xss.html

- Injection of tags, e.g. <script>...
- Breaking out of attributes, e.g. <img alt="...
- JavaScript URLs on some browsers, javascript:...

- Media files containing JavaScript, e.g. SVG

« Common types of XSS
- Reflected cross-site scripting (non-persistent)
- Stored cross-site scripting (persistent)

- DOM-based cross-site scripting

SWILzy

DATRR
3 1K 1

%z Technische .
S 4|2 Universitit Page 36

";3;353 i‘;" Braunschweig Institute of ‘
o nstitute o

System Security

Reflected XSS

o Reflected cross-site scripting
- Attacker sends malicious JavaScript code directly to user

- Malicious JavaScript code is reflected by web server

A Email containing malicious URL Q
1 . ©
o user=3Cscript%3Ealert()%3C%2Fscript%3E ﬁillii

O URL | bb r
@ pens in web browse)

Welcome <script=alert()</script>

SWILzy

e

<P % .
j’};& %ﬁz Technische
X

S 2-|*8 > Universitat Page 37
%ﬁ ge 3

.*s Braunschweig
"VON vy
sc¥

Institute of
System Security

-

Stored XSS

» Stored cross-site scripting
- Malicious JavaScript code is injected at the web server

- User queries trigger delivery of malicious code
create.php: Create user profile
. & == Q E
_ name=3Cscript%3Ealert()%3C%2Fscript%3E ’ | |
show.php: Show user profile
. - L

Name: <script=alert()</script>

WILz

oM e)
gﬁ}; ‘3% Technische
< 23 %z

S ’a<|*®> Universitit Page 38
"%:35; *#s Braunschweig , ‘
SR Institute of

System Security

Weird XSS

» Injection of code not limited to traditional user data

- Any type of input data potential source for attacks

« Examples: XSS over SIP (Internet telephony)

O 4

Q Who called? Let’s check the web interface
>
<

SIP: INVITE alice@foobar

number=3Cscript%3Ealert()%3C%2Fscript%3E

2
~ @ Call by <script=alert()</script>

WILz

o e)
gﬁ}; ‘3% Technische
< 23 %z

S a-|¥®> Universitat Page 39
‘33:35; *<5 Braunschweig , ‘
SR Institute of

System Security

Again: Code vs. Data

» The developer’s view

<?php echo “welcome $user posted $comment" 7>

e The web browser’s view

<?php echo “welcome $user posted $comment" 7>
Tags) BDE#! ?

e Cross-site scripting

<?php echo “welcome <script>alert()</script> ..."” ?>

WILz

o e)
gﬁ}; ‘3% Technische
< 23 %z

S ac|*%> Universitat Page 40
‘%:35; *#s Braunschweig : ‘
SR Institute of

System Security

Avoiding XSS

» Validation of any user-supplied data
- Escaping of GET and POST parameters
- Validation of externally stored data, e.g. databases

- Checking of other sources, e.g. cookies, referer

» Comprehensive input validation non-trivial
- Output validation often easier

- Developer knows where JavaScript code is located

o In general: whitelisting favorable over blacklisting

,\)IILQ

oM e)
g‘% ‘3% Technische
< A2 %2

ii’?‘i > Universitat Page g1
»7A|% 45 Braunschweig -
SR Institute of

System Security

WILz

Z};'L&% Technische
| ¢ 2
3

Uf?'i » > Universitat
L) o .
22| % %> Braunschweig

v, v
O‘Vscﬁé

Summary

Page 42

Institute of
System Security

Py

...many other attacks

o Cross-site Request Forgery (XSRF)
- Indirect access to a web application via forged requests

- Example:

o HTTP Parameter Pollution (HPP)
- Exploitation of inconsistent HTTP parameter parsing

- Example: a=x&a=y may be interpreted as a=x or a=y or a=xy

« SSL Striping
- Man-in-the-middle attack removing SSL encryption

- Example: web proxy replacing https:// with http://

,\)IILQ

A?V? ’ : 6’(\
=3

%z Technische .
§ 2182 Universitit Page 43

‘%%g {‘5’ Braunschweig Institute of ‘
s nstitute o

System Security

Conclusions

» Web Security
- Developing secure web applications non-trivial
- Several attack vectors using injected code

- Never, never, never trust user-supplied data

e Client-side and server-side attacks
- Server-side: SQL and other code injection

- Client-side: Cross-site scripting and friends

WILz

o e)
gﬁ}i ‘3% Technische
< A2 %z

S 2.8 > Universitat Page
‘;3:35 .*s Braunschweig B% 44 ‘
T Institute of |

System Security

