
Web Security
Vorlesung “Einführung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck & Prof. Dr. Martin Johns
Part
#1

Page

Overview

• Topic of the unit
• Web Security

• Parts of the unit
• Part #1: Server-side attacks
• Part #2: Web sessions
• Part #3: Client-side attacks

2

Page

Web Applications

• Applications implemented using “Web technologies”
• Client/server model using HTTP for communication
• Code at client: HTML, JavaScript, Flash, ...
• Code at server: PHP, JSP, ASP, ... and SQL

• Some examples
• Facebook, Ebay, Youtube, ... it’s just great!

3

Web browser Web server

HTTP request

HTTP response
Database

Page

Security Problems

• All typical security problems
• Weak cryptography; weak authentication
• Faulty and incorrect implementations

• Problems specific to web applications:
• Client: Cross-site scripting and related attacks
• Server: Code injection and path traversal

4

Web browser Web server

HTTP request

HTTP response
Database

Page

SQL Injection

• A simple example: password check in PHP

• Let’s send a HTTP request ...

5

$name = $_GET ["name"];
$password = $_GET ["password"];
$query = "SELECT * FROM users WHERE name = '$name'
 AND password = '$password'";

foo.com/?name=steve&password=secret

http://foo.com/?name=steve&password=secret

Page

SQL Injection

• A simple example: password check in PHP

• Let’s send a HTTP request ...

6

$name = $_GET ["name"];
$password = $_GET ["password"];
$query = "SELECT * FROM users WHERE name = '$name'
 AND password = '$password'";

$name = "steve";
$password = "secret";
$query = "SELECT * FROM users WHERE name = 'steve'
 AND password = 'secret'";

Page

SQL Injection

• A simple example: password check in PHP

• Let’s send another HTTP request ...

7

$name = $_GET ["name"];
$password = $_GET ["password"];
$query = "SELECT * FROM users WHERE name = '$name'
 AND password = '$password'";

foo.com/?name=steve&password=x’%20or%20‘1’=’1

Page

SQL Injection

• A simple example: password check in PHP

• Let’s send another HTTP request ...

8

$name = $_GET ["name"];
$password = $_GET ["password"];
$query = "SELECT * FROM users WHERE name = '$name'
 AND password = '$password'";

$name = "steve";
$password = "x' or '1'='1";
$query = "SELECT * FROM users WHERE name = 'steve'
 AND password = 'x' or '1'='1'";

Condition is always true
(password irrelevant)

Page

Impact & Defense

• Attack impact
• Information leakage (‘; SELECT * FROM ...)
• Data manipulation (‘; INSERT ... and ‘; DELETE ...)
• Code execution (depends on SQL interface of database)

• What is the problem? Insufficient validation of input data

• Countermeasures
• Escaping of control and syntax characters
• Prepared SQL statements (no mixture of data and code)

9

Page

Remote Code Execution

• Another example: local helper program called via PHP

• Let’s send a HTTP request ...

10

<?php
 $data = $_GET ["data"];
 $output = shell_exec("cat "+ $data);
 echo "<pre>$output</pre>";
?>

foo.com/?data=highscore.data

http://foo.com/?data=highscore.data

Page

Remote Code Execution

• Another example: local helper program called via PHP

• Let’s send a HTTP request ...

11

<?php
 $data = $_GET ["data"];
 $output = shell_exec("cat "+ $data);
 echo "<pre>$output</pre>";
?>

<?php
 $file = "highscores.data";
 $output = shell_exec("cat highscores.data ");
 echo "<pre>konrad: 13 points</pre>";
?>

Page

Remote Code Execution

• Another example: local helper program called via PHP

• Let’s send another HTTP request ...

12

<?php
 $data = $_GET ["data"];
 $output = shell_exec("cat "+ $data);
 echo "<pre>$output</pre>";
?>

foo.com/?data=foo;%20rm%20-rf%20/

http://foo.com/?data=

Page

Remote Code Execution

• Another example: local helper program called via PHP

• Let’s send another HTTP request ...

13

<?php
 $data = $_GET ["data"];
 $output = shell_exec("cat "+ $data);
 echo "<pre>$output</pre>";
?>

<?php
 $data = "foo; rm -rf /";
 $output = shell_exec("cat foo; rm -rf /");
 echo "<pre>file not found</pre>";
?> Execution of arbitrary

shell commands

Page

Impact & Defense

• Attack impact
• Execution of arbitrary code on server system
• Privileges of user running web server (e.g. www)
• Attack variants using injected PHP or ASP code

• What is the problem? Insufficient validation of data again!

• Countermeasures
• Escaping of control and syntax characters
• No execution of shell commands from web applications

14

Page

Path Traversals

• Example: Access to local file of web application

• Potential break out from directory of web application

15

foo.com/?file=highscore.data

foo.com/?file=../etc/passwd

foo.com/?file=../../etc/passwd

foo.com/?file=..%2F..%2Fetc/passwd

Page

Impact & Defense

• Attack impact
• Access to files outside the scope of the web application
• Potential access to configuration files and source code
• Combination with remote code execution (e.g. Nimda)

• What is the problem? Insufficient validation of data again!

• Countermeasures
• Sanitization and normalization of file paths
• Whitelisting of allowed files and directories

16

Page

Weird Code Injection

• Injection of code not limited to traditional user input
• Any type of input data potential source for attacks

• Example: SQL injection over RFID chips

17

Prepares an RFID chip
id=”x’; DELETE FROM products;”

Reads RFID chip when in proximity
SELECT * FROM products WHERE id=$id

All products deleted

(Rieback et al., PERCOM 2006)

1

2

3

Page

What is wrong?

• Root cause of most vulnerabilities
• Dynamic construction of code using string operations
• Separation of code and data not enforced

• Dangerous code elements in strings
• SQL injection: ‘ (termination of strings)
• Remote code execution ; (termination of commands)
• Path traversal ../ (move to upper directory)

• Several other attack surfaces: JSON, LDAP, XPATH injection

18

Page

Code vs. Data

• The developer’s view

• The database’s view

• An attack mixing code and data

19

$sql = “SELECT * FROM users WHERE passwd = ‘“ + $pass + ”’”;

$sql = “SELECT * FROM users WHERE passwd = ‘“ + $pass + ”’”;

$sql = “SELECT * FROM users WHERE passwd = ‘x‘ or ‘1’ = ’1’”;

Code Data

Code Data ?

Code Data Attack

Web Security
Vorlesung “Einführung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck & Prof. Dr. Martin Johns
Part
#2

Page

Overview

• Topic of the unit
• Web Security

• Parts of the unit
• Part #1: Server-side attacks
• Part #2: Web sessions
• Part #3: Client-side attacks

21

Page

Sessions in HTTP

• HTTP stateless by design
• Sessions prerequisite for online shopping, gaming, ...
• Web applications need to implement session tracking
• Session IDs track user activity across HTTP requests

• Three common implementations
• URL rewriting
• Form-based session IDs
• Cookies

22

1

2

3

Page

URL Rewriting

• Session management using URL rewriting
• Session IDs automatically appended to URLs
• Developer needs to fix all URLs in application
• Problem: Leakage of ID, e.g. in HTTP referrer header

23

GET /shop.php?SESSIONID=0d3adc0d3b3 HTTP/1.1
Host: www.foobar.com
Referrer: http://www.foobar.com
User-Agent: Firefox 3.1337

GET /untrusted/webpage HTTP/1.1
Host: www.dangerous.com
Referrer: http://www.foobar.com/shop.php?SESSIONID=0d3adc0d3b3
User-Agent: Firefox 3.1337

Session ID in URL

Leakage in referrer

1

Page

Form-based Sessions IDs

• Session management using HTML forms
• Session IDs stored in hidden form fields
• Navigation of web application required to use forms
• Transport of session IDs in body of POST request
• Problem: back button of web browser

24

2

POST /shop.php HTTP/1.1
Host: www.foobar.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 43

USER=john.doe&SESSIONID=0d3adc0d3b3 Session ID in body

Page

Cookies

• Session management using cookies
• Persistent storage maintained by web browser
• Data set using HTTP headers or scripting, e.g. JavaScript
• Cookies automatically added for originating (sub-)domain

25

3

GET /shop/order.php HTTP/1.1
Host: www.foobar.com
Cookie: 0d3adc0d3b3

GET /shop/login.php HTTP/1.1
Host: www.foobar.com

HTTP/1.1 200 OK
Set-Cookie: 0d3adc0d3b3; path=/shop

Request

Response

Request with cookie

http://www.foobar.com
http://www.foobar.com

Page

Sessions and Security

• Session IDs used for tracking authenticated users
• Login process marks sessions as authenticated
• Problem: Risk of a comprise if session ID leaks

• Securing session IDs
• Hard to guess IDs → Long and random strings
• Hard to eavesdrop IDs → Encrypted transport if possible

• Are we safe now ...
• ... client-side attacks may still expose session IDs

26

Web Security
Vorlesung “Einführung in die IT-Sicherheit”

Prof. Dr. Konrad Rieck & Prof. Dr. Martin Johns
Part
#3

Page

Overview

• Topic of the unit
• Web Security

• Parts of the unit
• Part #1: Server-side attacks
• Part #2: Web sessions
• Part #3: Client-side attacks

28

Page

JavaScript

• JavaScript scripting language
• Introduced by Netscape in 1995 as ECMAScript
• Implemented in every modern web browser (not lynx)

• Powerful scripting interface
• Alteration of web pages
• Access to URLs and form fields
• Access and modification of cookies
• Initiating of new HTTP requests
• Execution of dynamic code

29

Page

Same-Origin Policy

• Main security measure for JavaScript
• Access restricted to elements from “same origin”
• Also applied to ActionScript (Flash) and CSS stuff

• Two elements share the same origin if
• ... the protocol is identical
• ... the host is identical (exception for subdomains)
• ... the port is identical

30

https://www.mega-relaunch.com:31337/shop/order.php

Protocol Host Port

Page

Cross-site Scripting

• Cross-site Scripting (XSS)
• Injection of (JavaScript) code into webpages
• Bypass of same-origin policy due to injection
• Root-cause: display of insufficiently validated data

• Simple example

<?php
 $user = $_GET ["user"];
 echo "Welcome home, $user!";
?>

31

Page

Cross-site Scripting

• Cross-site Scripting (XSS)
• Injection of (JavaScript) code into webpages
• Bypass of same-origin policy due to injection
• Root-cause: display of insufficiently validated data

• Simple example

foo.com/?user=%3Cscript%3Ealert()%3C%2Fscript%3E

32

Page

Cross-site Scripting

• Cross-site Scripting (XSS)
• Injection of (JavaScript) code into webpages
• Bypass of same-origin policy due to injection
• Root-cause: display of insufficiently validated data

• Simple example

<?php
 $user = $_GET ["user"];
 echo "Welcome home, <script>alert()</script>!";
?>

33

Page

Cross-site Scripting

• Cross-site Scripting (XSS)
• Injection of (JavaScript) code into webpages
• Bypass of same-origin policy due to injection
• Root-cause: display of insufficiently validated data

• Simple example

foo.com/?user=%3Cscript%3Ealert()%3C%2Fscript%3E

34

Page

Capabilities of XSS

• Injection of JavaScript code = compromise of web browser

• Forgery of web content
• Attacker manipulates content on the web page

• Spoofing of login dialogues
• Attacker uses JavaScript code to phish login credentials

• Session and browser hijacking
• Attacker steals session IDs and acts as the user

• Further web-based attacks, e.g. JavaScript worms

35

Page

Entry Points and Types

• XSS entry points
• Injection of tags, e.g. <script>...
• Breaking out of attributes, e.g. <img alt=”...
• JavaScript URLs on some browsers, javascript:...
• Media files containing JavaScript, e.g. SVG

• Common types of XSS
• Reflected cross-site scripting (non-persistent)
• Stored cross-site scripting (persistent)
• DOM-based cross-site scripting

36

see ha.ckers.org/xss.html

Page

Reflected XSS

• Reflected cross-site scripting
• Attacker sends malicious JavaScript code directly to user
• Malicious JavaScript code is reflected by web server

37

Email containing malicious URL
user=3Cscript%3Ealert()%3C%2Fscript%3E

Opens URL in web browser

Welcome <script>alert()</script>

1

2

3

Page

Stored XSS

• Stored cross-site scripting
• Malicious JavaScript code is injected at the web server
• User queries trigger delivery of malicious code

38

create.php: Create user profile
name=3Cscript%3Ealert()%3C%2Fscript%3E

show.php: Show user profile

Name: <script>alert()</script>

1

2

3

Page

Weird XSS

• Injection of code not limited to traditional user data
• Any type of input data potential source for attacks

• Examples: XSS over SIP (Internet telephony)

39

SIP: INVITE alice@foobar
number=3Cscript%3Ealert()%3C%2Fscript%3E

Who called? Let’s check the web interface

Call by <script>alert()</script>

1

2

3

Page

Again: Code vs. Data

• The developer’s view

• The web browser’s view

• Cross-site scripting

40

<?php echo “welcome $user posted $comment” ?>

<?php echo “welcome $user posted $comment” ?>

<?php echo “welcome <script>alert()</script> ...” ?>

HTML Data

Tags Data? ?

Page

Avoiding XSS

• Validation of any user-supplied data
• Escaping of GET and POST parameters
• Validation of externally stored data, e.g. databases
• Checking of other sources, e.g. cookies, referer

• Comprehensive input validation non-trivial
• Output validation often easier
• Developer knows where JavaScript code is located

• In general: whitelisting favorable over blacklisting

41

Page

Summary

42

Page

...many other attacks

• Cross-site Request Forgery (XSRF)
• Indirect access to a web application via forged requests
• Example:

• HTTP Parameter Pollution (HPP)
• Exploitation of inconsistent HTTP parameter parsing
• Example: a=x&a=y may be interpreted as a=x or a=y or a=xy

• SSL Striping
• Man-in-the-middle attack removing SSL encryption
• Example: web proxy replacing https:// with http://

43

Page

Conclusions

• Web Security
• Developing secure web applications non-trivial
• Several attack vectors using injected code
• Never, never, never trust user-supplied data

• Client-side and server-side attacks
• Server-side: SQL and other code injection
• Client-side: Cross-site scripting and friends

44

