RSA
Uberblick

RSA ist ein Trick, der auf der Multiplikation von Ganzzahlen beziiglich eines
Modulus und der Schwierigkeit der Primfaktorzerlegung beruht. Was sind
die Primfaktoren von 76085064334921111517

e Plaintext m ist eine Ganzzahl € [1,n —1] C Z

e Cyphertext ¢ ist eine Ganzzahl € [1,n —1] C Z

e n bezeichnet den Modulus. n = p-q, p,q € P (Menge der Primzahlen)
¢(n)=(p—1)-(¢g—1)

e — Public Exponent, d — Private Exponent. e,d € [1, ¢(n)]

Euler’sche ¢-Funktion: ¢(n) := [{a € N]1 < a < nAggT(a,n) = 1}|.
Zahlt

— die Anzahl der der teilerfremden Zahlen:
x o(7) ={1,2,3,4,5,6}| = 6(=7—1) — 7 ist Primzahl
* ¢(6) = (2-3) = 9(2) - 9(3) = (2-1)-(3—-1) =2 und
tatsichlich ¢(6) = [{1,5}| = 2
*x D, €EP = d(p-q)=(p—1)-(¢g—1). Gleichtes gilt fiir alle
Primfaktoren jeder Ganzzahl

— Und daher genauso die Anzahl der Elemente einer Gruppe Z;,n €
N (der eigentliche Grund fiir die Verwendung in RSA)

RSA Trapdoor Permutation

Der Grund, warum es funktioniert:

e ¢, d sind invers: e-d mod ¢(n) =1

e Daher: ¢ mod n = (m®)? mod n=m? mod n=m

RSA Key Generation
1. Wahle zwei zuféllige Primzahlen p, ¢:

e Sie miissen grof sein (jeweils mindestens irgendwo im Bereich
21024) damit p - ¢ ~ 22°*® und nicht zu nah bei einander liegen.

2. Generiere public exponent e:
e ¢ = randprime(¢(n)) (zufillige Primzahl kleiner ¢(n))
3. Generiere private exponent d:

e Inverse von e beziiglich mode¢(n) mithilfe des erweiterten euklidis-
chen Algorithmus:
— mathematisch: e-d + ¢(n) -t = ggT(e, p(n))
— Pseudocode: (ggT, d, t) < xgcd(e, ¢(n))

¢(n) muss offensichtlich geheim bleiben, da man sonst d aus e und ¢(n)
mit xgcd() berechnen kann. Ebenso miissen p,q geheim bleiben, da so
schnell ¢(n) berechnet werden kann. Modulus n muss hingegen 6ffentlich
sein, damit verschliisselt werden kann.

RSA Encryption
c=m® modn

RSA Decryption

m=c® modn

Angriffe gegen RSA Verschlisselung
RSA ist deterministisch

Gleiche Daten werden immer gleich verschliisselt. Es sollte Padding auf
eine Standardlange genutzt werden. Das Padding sollte ungefdhr 64 Bits an
Randomness haben.

RSA ist "weich"

Man kann Cyphertext-Nachrichten mit einander multiplizieren und erhélt
wieder eine valide Cyphertext-Nachricht:

c1-ca modn=m{-m§ modn=(mj-me)® modn

Aus vorhandenen Cyphertexten konnen neue Cyphertexte generiert wer-
den. Das hilft bei known cyphertext und known plaintert Attacken. Es kann
auch nach einem inversen Element fiir den Cyphertext gesucht werden, der
bei der Multiplikation mit dem Cyphertext 1 ergibt, wofiir Plaintext und
Cyphertext gleich sind.

Signieren mit RSA

— Verschliisseln einer Nachricht m mithilfe des privaten Schliissels.

Es ist moglich, eine Signatur mithilfe seines privaten Schliissels zu erzeu-
gen, doch davon wird abgeraten: Es ist sehr langsam und kann nur Daten
(Ganzzahlen) signieren, die kleiner sind, als der Modulus n.

Daher ist es eher iiblich die Hashsumme der Daten zu bilden und diese
Hashsumme zu signieren. So kann die Hashsumme auch bis zur Gréfe des
Modulus (shab512sum und auffarts) herankommen, was sehr sicher ist.

Probleme mit RSA Signaturen

e Known Plaintext Attack wird einem quasi geschenkt, wenn die Sig-
natur unter die Nachricht kommt.

e 02 modn=0,1¢ modn=1,(n— 1)d mod n =n — 1. Diese Signa-
turen kann jeder erzeugen.

e Blinding Attack: Sei M eine Nachricht, die nicht signiert werden wiirde,
aber R°M schon (M R geht auch). Signiert der Besitzer des privaten
Schliissels R°M, kann auf folgende Art eine Signatur fir M erzeugt
werden:

(REM)? mod n = R®*M? mod n=RM? modn
Jetzt muss die Signatur S nur noch durch R geteilt werden:

d
mod n = M% mod n

S/R mod n = rM

