
RSA

Überblick

RSA ist ein Trick, der auf der Multiplikation von Ganzzahlen bezüglich eines
Modulus und der Schwierigkeit der Primfaktorzerlegung beruht. Was sind
die Primfaktoren von 7608506433492111151?

• Plaintext m ist eine Ganzzahl ∈ [1, n− 1] ⊂ Z

• Cyphertext c ist eine Ganzzahl ∈ [1, n− 1] ⊂ Z

• n bezeichnet den Modulus. n = p · q, p, q ∈ P (Menge der Primzahlen)

• φ(n) = (p− 1) · (q − 1)

• e – Public Exponent, d – Private Exponent. e, d ∈ [1, φ(n)]

• Euler’sche φ-Funktion: φ(n) := |{a ∈ N|1 ≤ a ≤ n ∧ ggT (a, n) = 1}|.
Zählt

– die Anzahl der der teilerfremden Zahlen:

∗ φ(7) = |{1, 2, 3, 4, 5, 6}| = 6(= 7− 1) → 7 ist Primzahl
∗ φ(6) = φ(2 · 3) = φ(2) · φ(3) = (2 − 1) · (3 − 1) = 2 und

tatsächlich φ(6) = |{1, 5}| = 2

∗ p, q ∈ P → φ(p · q) = (p − 1) · (q − 1). Gleichtes gilt für alle
Primfaktoren jeder Ganzzahl

– Und daher genauso die Anzahl der Elemente einer Gruppe Z∗
n, n ∈

N (der eigentliche Grund für die Verwendung in RSA)

RSA Trapdoor Permutation

Der Grund, warum es funktioniert:

• e, d sind invers: e · d mod φ(n) = 1

• Daher: cd mod n = (me)d mod n = me·d mod n = m

1

RSA Key Generation

1. Wähle zwei zufällige Primzahlen p, q :

• Sie müssen groß sein (jeweils mindestens irgendwo im Bereich
21024) damit p · q ≈ 22048 und nicht zu nah bei einander liegen.

2. Generiere public exponent e:

• e = randprime(φ(n)) (zufällige Primzahl kleiner φ(n))

3. Generiere private exponent d :

• Inverse von e bezüglichmodφ(n)mithilfe des erweiterten euklidis-
chen Algorithmus:

– mathematisch: e · d+ φ(n) · t = ggT (e, φ(n))

– Pseudocode: (ggT, d, t) ← xgcd(e, φ(n))

φ(n) muss offensichtlich geheim bleiben, da man sonst d aus e und φ(n)
mit xgcd() berechnen kann. Ebenso müssen p, q geheim bleiben, da so
schnell φ(n) berechnet werden kann. Modulus n muss hingegen öffentlich
sein, damit verschlüsselt werden kann.

RSA Encryption

c = me mod n

RSA Decryption

m = cd mod n

2

Angriffe gegen RSA Verschlüsselung

RSA ist deterministisch

Gleiche Daten werden immer gleich verschlüsselt. Es sollte Padding auf
eine Standardlänge genutzt werden. Das Padding sollte ungefähr 64 Bits an
Randomness haben.

RSA ist "weich"

Man kann Cyphertext-Nachrichten mit einander multiplizieren und erhält
wieder eine valide Cyphertext-Nachricht:

c1 · c2 mod n = me
1 ·me

2 mod n = (m1 ·m2)
e mod n

Aus vorhandenen Cyphertexten können neue Cyphertexte generiert wer-
den. Das hilft bei known cyphertext und known plaintext Attacken. Es kann
auch nach einem inversen Element für den Cyphertext gesucht werden, der
bei der Multiplikation mit dem Cyphertext 1 ergibt, wofür Plaintext und
Cyphertext gleich sind.

Signieren mit RSA

→ Verschlüsseln einer Nachricht m mithilfe des privaten Schlüssels.
Es ist möglich, eine Signatur mithilfe seines privaten Schlüssels zu erzeu-

gen, doch davon wird abgeraten: Es ist sehr langsam und kann nur Daten
(Ganzzahlen) signieren, die kleiner sind, als der Modulus n.

Daher ist es eher üblich die Hashsumme der Daten zu bilden und diese
Hashsumme zu signieren. So kann die Hashsumme auch bis zur Größe des
Modulus (sha512sum und auffärts) herankommen, was sehr sicher ist.

Probleme mit RSA Signaturen

• Known Plaintext Attack wird einem quasi geschenkt, wenn die Sig-
natur unter die Nachricht kommt.

• 0d mod n = 0, 1d mod n = 1, (n− 1)d mod n = n− 1. Diese Signa-
turen kann jeder erzeugen.

• Blinding Attack : Sei M eine Nachricht, die nicht signiert werden würde,
aber ReM schon (MRe geht auch). Signiert der Besitzer des privaten
Schlüssels ReM , kann auf folgende Art eine Signatur für M erzeugt
werden:

3

(ReM)d mod n = Re·dMd mod n = RMd mod n

Jetzt muss die Signatur S nur noch durch R geteilt werden:

S/R mod n =
RMd

R
mod n =Md mod n

4

