diff --git a/doc/report.pdf b/doc/report.pdf new file mode 100644 index 0000000..43f4e80 Binary files /dev/null and b/doc/report.pdf differ diff --git a/doc/report.tex b/doc/report.tex index 4d1d521..de94de0 100644 --- a/doc/report.tex +++ b/doc/report.tex @@ -11,7 +11,7 @@ ]{tubsartcl} \usepackage[utf8x]{inputenc} -\usepackage[ngerman]{babel} +%\usepackage[ngerman]{babel} \usepackage{multicol} @@ -54,22 +54,24 @@ line/.style={-latex} % the lesser the width the greater will be the diagram wi \section{Simple combinatorics} \section{XOR cipher} +\begin{figure}[h] + \centering \begin{tikzpicture} \node[block] (m1) {$M_1$}; \node[block,below=of m1] (k1) {$K$}; - \node[block,below=of k1] (c1) {$C_1$}; + \node[block,below=of k1] (c1) {$C_x$}; \node at ($(m1)!0.5!(k1)$){$\oplus$}; \node at ($(k1)!0.5!(c1)$){$=$}; - \node[block,text width=2cm, right=of m1] (mgen) {$C_1 \oplus K$}; + \node[block,text width=2cm, right=of m1] (mgen) {$C_x \oplus K$}; \node[xshift=-2mm] at ($(m1)!0.5!(mgen)$){$=$}; \node[draw,inner xsep=5mm,inner ysep=5mm,fit=(mgen)(m1)(k1)(c1)](g){}; \node[block, right=of m1, xshift=8cm] (m2) {$M_2$}; \node[block,below=of m2] (k2) {$K$}; - \node[block,below=of k2] (c2) {$C_2$}; + \node[block,below=of k2] (c2) {$C_y$}; \node at ($(m2)!0.5!(k2)$){$\oplus$}; \node at ($(k2)!0.5!(c2)$){$=$}; - \node[block,text width=2cm, left=of k2] (kgen) {$M_2 \oplus C_2$}; + \node[block,text width=2cm, left=of k2] (kgen) {$M_2 \oplus C_y$}; \node[xshift=2mm] at ($(k2)!0.5!(kgen)$){$=$}; \node[draw, inner xsep=5mm,inner ysep=5mm,fit=(kgen)(m2)(k2)(c2)](h){}; @@ -78,7 +80,14 @@ line/.style={-latex} % the lesser the width the greater will be the diagram wi \draw[->] (c1) -| ([xshift=-1cm]mgen); \draw[->] (kgen) -| ([xshift=1cm]mgen); - \end{tikzpicture} +\caption{This Diagram shows how an Attacker can calculate the Key $K$ and the Message $M_1$.} +\end{figure} +A few requirements must be satisfied in order to get hold of the $K$ and the $M_1$: +\begin{itemize} + \item $M_2$ must be longer than $M_1$ or $K$, so that the key can be calculated in at least the needed length. + \item A successfully decoded message must be distinguishable from an unsuccessfully decoded message, so that the + cipher texts $C_x$ and $C_y$ can be exchanged if necessary. +\end{itemize} \end{document}