Compare commits
4 Commits
25c4054dbc
...
6c4da20268
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6c4da20268 | ||
|
|
44efb66411 | ||
|
|
db764bbac0 | ||
|
|
4d2ef1a667 |
@@ -1,108 +1,182 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
draw_12_rects_thick_outline.py
|
||||
draw_12_slanted_top_bottom.py
|
||||
|
||||
800 × 600 ARGB framebuffer.
|
||||
12 tall rectangles (aspect 1 : 12) placed side‑by‑side with a gap.
|
||||
Only the rectangle outline is drawn, the border thickness can be changed
|
||||
with the constant LINE_THICKNESS (default = 3 pixels).
|
||||
|
||||
The complete framebuffer is streamed to a TCP server listening on
|
||||
localhost:12345 (payload is prefixed with a 4‑byte big‑endian length).
|
||||
* 800 × 600 ARGB framebuffer (A,R,G,B each 1 byte)
|
||||
* 12 rectangles, aspect 1 : 12, 5 px gap, 100 px empty margin at top & bottom
|
||||
* each rectangle has an individual tilt angle (degrees) stored in
|
||||
ROT_ANGLES_DEG[12]
|
||||
* the top and bottom edges are *slanted* while the left‑ and right‑hand
|
||||
edges remain perfectly vertical
|
||||
* outline colour = opaque white, thickness = LINE_THICKNESS (default = 3 px)
|
||||
* the raw buffer (with a 4‑byte length prefix) is streamed to a TCP server
|
||||
listening on localhost:12345
|
||||
"""
|
||||
|
||||
import math
|
||||
import socket
|
||||
import sys
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Frame‑buffer configuration
|
||||
# 1️⃣ Frame‑buffer configuration
|
||||
# ----------------------------------------------------------------------
|
||||
FB_WIDTH = 800 # horizontal pixels
|
||||
FB_HEIGHT = 600 # vertical pixels
|
||||
BPP = 4 # bytes per pixel (A,R,G,B)
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Geometry of the 12 rectangles
|
||||
# 2️⃣ Margins & rectangle geometry (before slant)
|
||||
# ----------------------------------------------------------------------
|
||||
RECT_HEIGHT = 400 # fill the whole image vertically
|
||||
RECT_WIDTH = RECT_HEIGHT // 12 # 600 / 12 = 50 px (maintains 1:12)
|
||||
MARGIN_TOP = 100 # empty band at the very top
|
||||
MARGIN_BOTTOM = 150 # empty band at the very bottom
|
||||
|
||||
SPACING = 10 # pixels between two neighbours
|
||||
RECT_HEIGHT = FB_HEIGHT - MARGIN_TOP - MARGIN_BOTTOM # usable height = 400 px
|
||||
RECT_WIDTH = RECT_HEIGHT // 12 # ≈ 33 px (aspect 1 : 12)
|
||||
|
||||
SPACING = 10 # gap between rectangles
|
||||
TOTAL_RECT_W = 12 * RECT_WIDTH + 11 * SPACING
|
||||
X0_START = (FB_WIDTH - TOTAL_RECT_W) // 2 # centre the whole strip
|
||||
X0_START = (FB_WIDTH - TOTAL_RECT_W) // 2 # centre the whole strip
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Outline thickness (change this to whatever you need)
|
||||
# 3️⃣ Outline thickness (you may change it)
|
||||
# ----------------------------------------------------------------------
|
||||
LINE_THICKNESS = 4 # >=1 ; thicker than 1 pixel
|
||||
LINE_THICKNESS = 5 # ≥ 1 pixel
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Helper – write a pixel into the bytearray (no bounds check for speed)
|
||||
# 4️⃣ Per‑rectangle tilt angles (degrees)
|
||||
# ----------------------------------------------------------------------
|
||||
# You can generate these programmatically, read them from a file, etc.
|
||||
ROT_ANGLES_DEG = [
|
||||
0, 5, 10, 15, 20, 25,
|
||||
30, 35, 40, 45, 50, 85
|
||||
]
|
||||
assert len(ROT_ANGLES_DEG) == 12, "Exactly 12 angles are required."
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Helper – write a single pixel (bounds‑checked)
|
||||
# ----------------------------------------------------------------------
|
||||
def set_pixel(buf: bytearray, x: int, y: int, color: tuple) -> None:
|
||||
"""Write an ARGB pixel at (x, y). `color` = (A,R,G,B)."""
|
||||
offset = (y * FB_WIDTH + x) * BPP
|
||||
buf[offset:offset + 4] = bytes(color) # A,R,G,B order
|
||||
if 0 <= x < FB_WIDTH and 0 <= y < FB_HEIGHT:
|
||||
off = (y * FB_WIDTH + x) * BPP
|
||||
buf[off:off + 4] = bytes(color) # A,R,G,B order
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Fill a rectangular region (used for thick edges)
|
||||
# Helper – draw a thick line (Bresenham + square brush)
|
||||
# ----------------------------------------------------------------------
|
||||
def fill_rect(buf: bytearray, x0: int, y0: int, w: int, h: int, color: tuple) -> None:
|
||||
"""Write a solid w × h block of `color` starting at (x0, y0)."""
|
||||
# Clip to the frame buffer – safety net for very thick lines at the border
|
||||
x0 = max(0, x0)
|
||||
y0 = max(0, y0)
|
||||
w = min(w, FB_WIDTH - x0)
|
||||
h = min(h, FB_HEIGHT - y0)
|
||||
def draw_thick_line(buf: bytearray,
|
||||
x0: int, y0: int,
|
||||
x1: int, y1: int,
|
||||
color: tuple,
|
||||
thickness: int) -> None:
|
||||
"""Draw a line from (x0,y0) to (x1,y1) using a square brush of `thickness`."""
|
||||
dx = abs(x1 - x0)
|
||||
dy = -abs(y1 - y0)
|
||||
sx = 1 if x0 < x1 else -1
|
||||
sy = 1 if y0 < y1 else -1
|
||||
err = dx + dy # error term
|
||||
|
||||
row_bytes = w * BPP
|
||||
pixel_bytes = bytes(color)
|
||||
while True:
|
||||
# paint a filled square centred on the current pixel
|
||||
for ty in range(-thickness // 2, thickness // 2 + 1):
|
||||
for tx in range(-thickness // 2, thickness // 2 + 1):
|
||||
set_pixel(buf, x0 + tx, y0 + ty, color)
|
||||
|
||||
for y in range(y0, y0 + h):
|
||||
off = (y * FB_WIDTH + x0) * BPP
|
||||
buf[off:off + row_bytes] = pixel_bytes * w
|
||||
if x0 == x1 and y0 == y1:
|
||||
break
|
||||
e2 = 2 * err
|
||||
if e2 >= dy:
|
||||
err += dy
|
||||
x0 += sx
|
||||
if e2 <= dx:
|
||||
err += dx
|
||||
y0 += sy
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Build the framebuffer
|
||||
# 5️⃣ Build the framebuffer (background + white slanted‑top/bottom rectangles)
|
||||
# ----------------------------------------------------------------------
|
||||
def build_framebuffer() -> bytearray:
|
||||
"""Create an ARGB buffer, fill it black and draw the thick‑outline rectangles."""
|
||||
# 1️⃣ background = opaque black (A,R,G,B)
|
||||
"""Create the ARGB buffer and draw the 12 rectangles with slanted top/bottom."""
|
||||
# ----- background: opaque black -----
|
||||
fb = bytearray(FB_WIDTH * FB_HEIGHT * BPP)
|
||||
bg_color = (255, 0, 0, 0) # opaque black
|
||||
fb[:] = bg_color * (FB_WIDTH * FB_HEIGHT)
|
||||
bg = (255, 0, 0, 0) # A,R,G,B = opaque black
|
||||
fb[:] = bg * (FB_WIDTH * FB_HEIGHT)
|
||||
|
||||
WHITE = (255, 255, 255, 255) # colour of the outlines
|
||||
|
||||
half_w = RECT_WIDTH // 2 # half the (un‑slanted) width
|
||||
|
||||
y_top = MARGIN_TOP
|
||||
y_bottom = FB_HEIGHT - MARGIN_BOTTOM - 1 # inclusive bottom row
|
||||
|
||||
# 2️⃣ draw each rectangle outline
|
||||
for idx in range(12):
|
||||
# ── colour palette (feel free to change) ───────────────────────
|
||||
rect_color = (255, 255, 255, 255) # opaque
|
||||
# --------------------------------------------------------------
|
||||
# 1️⃣ Un‑slanted left edge of the rectangle (including spacing)
|
||||
# --------------------------------------------------------------
|
||||
orig_x0 = X0_START + idx * (RECT_WIDTH + SPACING)
|
||||
|
||||
# left‑most X coordinate of the *inner* rectangle (the border belongs to it)
|
||||
x0 = X0_START + idx * (RECT_WIDTH + SPACING)
|
||||
y0 = 100
|
||||
w = RECT_WIDTH
|
||||
h = RECT_HEIGHT
|
||||
# --------------------------------------------------------------
|
||||
# 2️⃣ Centre X coordinate (kept fixed while slanting)
|
||||
# --------------------------------------------------------------
|
||||
cx = orig_x0 + half_w
|
||||
|
||||
# ── thick edges ──────────────────────────────────────────────────
|
||||
# --------------------------------------------------------------
|
||||
# 3️⃣ Angle for this rectangle
|
||||
# --------------------------------------------------------------
|
||||
angle_rad = math.radians(ROT_ANGLES_DEG[idx])
|
||||
sin_a = math.sin(angle_rad)
|
||||
|
||||
# --------------------------------------------------------------
|
||||
# 4️⃣ Vertical offset applied to the *ends* of the top/bottom lines
|
||||
# (the spec says: sin(angle) * RECT_WITH / 2)
|
||||
# --------------------------------------------------------------
|
||||
offset = sin_a * half_w # because RECT_WITH/2 == half_w
|
||||
|
||||
# --------------------------------------------------------------
|
||||
# 5️⃣ Coordinates of the four line end‑points
|
||||
# --------------------------------------------------------------
|
||||
# top edge
|
||||
fill_rect(fb, x0, y0, w, LINE_THICKNESS, rect_color)
|
||||
x0_top = cx - int(math.cos(angle_rad) * half_w)
|
||||
y0_top = int(round(y_top + offset))
|
||||
|
||||
x1_top = cx + int(math.cos(angle_rad) * half_w)
|
||||
y1_top = int(round(y_top - offset))
|
||||
|
||||
# bottom edge
|
||||
fill_rect(fb, x0, y0 + h - LINE_THICKNESS, w, LINE_THICKNESS, rect_color)
|
||||
x0_bot = cx - int(math.cos(angle_rad) * half_w)
|
||||
y0_bot = int(round(y_bottom - offset))
|
||||
|
||||
# left edge
|
||||
fill_rect(fb, x0, y0, LINE_THICKNESS, h, rect_color)
|
||||
x1_bot = cx + int(math.cos(angle_rad) * half_w)
|
||||
y1_bot = int(round(y_bottom + offset))
|
||||
|
||||
# right edge
|
||||
fill_rect(fb, x0 + w - LINE_THICKNESS, y0, LINE_THICKNESS, h, rect_color)
|
||||
# --------------------------------------------------------------
|
||||
# 6️⃣ Draw the four sides
|
||||
# --------------------------------------------------------------
|
||||
# top (slanted)
|
||||
draw_thick_line(fb, x0_top, y0_top, x1_top, y1_top,
|
||||
WHITE, LINE_THICKNESS)
|
||||
|
||||
# bottom (slanted)
|
||||
draw_thick_line(fb, x0_bot, y0_bot, x1_bot, y1_bot,
|
||||
WHITE, LINE_THICKNESS)
|
||||
|
||||
# left vertical side – from the *top‑left* endpoint down to the
|
||||
# *bottom‑left* endpoint
|
||||
draw_thick_line(fb, x0_top, y0_top, x0_bot, y0_bot,
|
||||
WHITE, LINE_THICKNESS)
|
||||
|
||||
# right vertical side – from the *top‑right* endpoint down to the
|
||||
# *bottom‑right* endpoint
|
||||
draw_thick_line(fb, x1_top, y1_top, x1_bot, y1_bot,
|
||||
WHITE, LINE_THICKNESS)
|
||||
|
||||
return fb
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Send the buffer to the TCP server
|
||||
# 6️⃣ Send the framebuffer to the TCP server (localhost:12345)
|
||||
# ----------------------------------------------------------------------
|
||||
def send_framebuffer(buf: bytearray,
|
||||
host: str = "127.0.0.1",
|
||||
@@ -110,7 +184,7 @@ def send_framebuffer(buf: bytearray,
|
||||
"""Open a TCP socket, connect, and stream the whole framebuffer."""
|
||||
try:
|
||||
with socket.create_connection((host, port), timeout=5) as sock:
|
||||
# optional length prefix (many protocols expect it)
|
||||
# optional 4‑byte length prefix – many simple protocols expect it
|
||||
length_prefix = len(buf).to_bytes(4, byteorder="big")
|
||||
sock.sendall(length_prefix + buf)
|
||||
print(f"✔ Sent {len(buf)} bytes to {host}:{port}")
|
||||
@@ -119,7 +193,7 @@ def send_framebuffer(buf: bytearray,
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Main entry point
|
||||
# 7️⃣ Main entry point
|
||||
# ----------------------------------------------------------------------
|
||||
def main() -> None:
|
||||
fb = build_framebuffer()
|
||||
@@ -128,3 +202,4 @@ def main() -> None:
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
232
draw_12_tilted_rects.c
Normal file
232
draw_12_tilted_rects.c
Normal file
@@ -0,0 +1,232 @@
|
||||
/*=====================================================================
|
||||
draw_12_tilted_rects.c
|
||||
---------------------------------------------------------------
|
||||
Creates an 800×600 ARGB frame‑buffer, draws 12 white rectangles
|
||||
whose top and bottom edges are slanted (as in the Python example
|
||||
you supplied) and streams the buffer to a TCP server on
|
||||
localhost:12345.
|
||||
|
||||
Compile (Linux / macOS):
|
||||
gcc -Wall -O2 draw_12_tilted_rects.c -lm -o draw_12_tilted_rects
|
||||
|
||||
Run:
|
||||
./draw_12_tilted_rects
|
||||
|
||||
-------------------------------------------------------------------*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <errno.h>
|
||||
#include <unistd.h>
|
||||
#include <arpa/inet.h>
|
||||
#include <sys/socket.h>
|
||||
|
||||
#define FB_W 800 /* framebuffer width */
|
||||
#define FB_H 600 /* framebuffer height */
|
||||
#define BPP 4 /* bytes per pixel (A,R,G,B) */
|
||||
#define FRAMEBUF_SIZE (FB_W * FB_H * BPP)
|
||||
|
||||
#define MARGIN_TOP 100
|
||||
#define MARGIN_BOTTOM 150
|
||||
|
||||
#define SPACING 10 /* space between rectangles */
|
||||
#define LINE_THICKNESS 4 /* thickness of outline (pixels) */
|
||||
#define NUM_RECTS 12
|
||||
|
||||
/*---------------------------------------------------------------*/
|
||||
/* 1. Per‑rectangle tilt angles (in degrees). Edit as you wish. */
|
||||
static int16_t rotAnglesDeg[NUM_RECTS] = {
|
||||
0, 5, 10, 15, 20, 25,
|
||||
30, 35, 40, 45, 50, 55
|
||||
};
|
||||
|
||||
/*---------------------------------------------------------------*/
|
||||
/* 2. ARGB colour helpers */
|
||||
static const uint32_t COL_BLACK = 0xFF000000; /* opaque black */
|
||||
static const uint32_t COL_WHITE = 0xFFFFFFFF; /* opaque white */
|
||||
|
||||
/*---------------------------------------------------------------*/
|
||||
/* 3. Simple pixel write (bounds‑checked) */
|
||||
static inline void set_pixel(uint8_t *fb, int x, int y, uint32_t col)
|
||||
{
|
||||
if (x < 0 || x >= FB_W || y < 0 || y >= FB_H)
|
||||
return; /* ignore out‑of‑bounds writes */
|
||||
uint32_t *dst = (uint32_t *)(fb + (y * FB_W + x) * BPP);
|
||||
*dst = col;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------*/
|
||||
/* 4. Thick line – Bresenham + square brush */
|
||||
static void draw_thick_line(uint8_t *fb,
|
||||
int x0, int y0,
|
||||
int x1, int y1,
|
||||
uint32_t col,
|
||||
int thickness)
|
||||
{
|
||||
int dx = abs(x1 - x0);
|
||||
int dy = -abs(y1 - y0);
|
||||
int sx = (x0 < x1) ? 1 : -1;
|
||||
int sy = (y0 < y1) ? 1 : -1;
|
||||
int err = dx + dy; /* error term */
|
||||
|
||||
while (1) {
|
||||
/* paint a square centred on the current pixel */
|
||||
for (int ty = -thickness/2; ty <= thickness/2; ++ty) {
|
||||
for (int tx = -thickness/2; tx <= thickness/2; ++tx) {
|
||||
set_pixel(fb, x0 + tx, y0 + ty, col);
|
||||
}
|
||||
}
|
||||
if (x0 == x1 && y0 == y1) break;
|
||||
int e2 = 2 * err;
|
||||
if (e2 >= dy) { err += dy; x0 += sx; }
|
||||
if (e2 <= dx) { err += dx; y0 += sy; }
|
||||
}
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------*/
|
||||
/* 5. Build the whole framebuffer */
|
||||
static void build_framebuffer(uint8_t *fb)
|
||||
{
|
||||
/* 5.1 background = opaque black */
|
||||
for (size_t i = 0; i < FRAMEBUF_SIZE; ++i) fb[i] = 0;
|
||||
uint32_t *pix = (uint32_t *)fb;
|
||||
for (size_t i = 0; i < FB_W * FB_H; ++i) pix[i] = COL_BLACK;
|
||||
|
||||
/* 5.2 geometry that does NOT depend on the angle */
|
||||
const int usable_h = FB_H - MARGIN_TOP - MARGIN_BOTTOM; /* 400 */
|
||||
const int rect_h = usable_h; /* 400 */
|
||||
const int rect_w = rect_h / 8; /* ≈33 */
|
||||
const int half_w = rect_w / 2;
|
||||
|
||||
const int total_rect_w = NUM_RECTS * rect_w + (NUM_RECTS - 1) * SPACING;
|
||||
const int x0_start = (FB_W - total_rect_w) / 2; /* centre strip */
|
||||
|
||||
const int y_top = MARGIN_TOP;
|
||||
const int y_bottom = FB_H - MARGIN_BOTTOM - 1; /* inclusive */
|
||||
|
||||
/* 5.3 draw each rectangle */
|
||||
for (int i = 0; i < NUM_RECTS; ++i) {
|
||||
/* ---- centre X (kept fixed while tilting) ---- */
|
||||
int orig_x0 = x0_start + i * (rect_w + SPACING);
|
||||
int cx = orig_x0 + half_w; /* centre X coordinate */
|
||||
|
||||
/* ---- angle in radians, sin and cos ---- */
|
||||
double angle_rad = rotAnglesDeg[i] * M_PI / 180.0;
|
||||
double sin_a = sin(angle_rad);
|
||||
double cos_a = cos(angle_rad);
|
||||
|
||||
/* ---- vertical offset applied to the end‑points of the top/bottom lines ---- */
|
||||
double offset = sin_a * half_w; /* sin(angle) * (RECT_W/2) */
|
||||
|
||||
/* ---- X offsets for the slanted top/bottom edges ---- */
|
||||
double x_offset = cos_a * half_w; /* cos(angle) * (RECT_W/2) */
|
||||
|
||||
/* ---- compute the four end‑points (rounded to nearest integer) ---- */
|
||||
int x0_top = (int)round(cx - x_offset);
|
||||
int y0_top = (int)round(y_top + offset);
|
||||
int x1_top = (int)round(cx + x_offset);
|
||||
int y1_top = (int)round(y_top - offset);
|
||||
|
||||
int x0_bot = (int)round(cx - x_offset);
|
||||
int y0_bot = (int)round(y_bottom + offset);
|
||||
int x1_bot = (int)round(cx + x_offset);
|
||||
int y1_bot = (int)round(y_bottom - offset);
|
||||
|
||||
/* ---- draw the four sides (thick) ---- */
|
||||
draw_thick_line(fb, x0_top, y0_top, x1_top, y1_top,
|
||||
COL_WHITE, LINE_THICKNESS); /* top */
|
||||
draw_thick_line(fb, x0_bot, y0_bot, x1_bot, y1_bot,
|
||||
COL_WHITE, LINE_THICKNESS); /* bottom*/
|
||||
|
||||
/* vertical sides – use the X coordinates of the *top* points;
|
||||
the Y‑coordinates are taken from the corresponding top/bottom
|
||||
endpoint, therefore they are automatically different when the
|
||||
angle ≠ 0 or 180. */
|
||||
draw_thick_line(fb, x0_top, y0_top, x0_bot, y0_bot,
|
||||
COL_WHITE, LINE_THICKNESS); /* left */
|
||||
draw_thick_line(fb, x1_top, y1_top, x1_bot, y1_bot,
|
||||
COL_WHITE, LINE_THICKNESS); /* right */
|
||||
}
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------*/
|
||||
/* 6. Send the framebuffer over TCP (length‑prefixed) */
|
||||
static int send_framebuffer(const uint8_t *fb, size_t len,
|
||||
const char *host, uint16_t port)
|
||||
{
|
||||
struct sockaddr_in srv;
|
||||
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
||||
if (sock < 0) {
|
||||
perror("socket");
|
||||
return -1;
|
||||
}
|
||||
|
||||
memset(&srv, 0, sizeof(srv));
|
||||
srv.sin_family = AF_INET;
|
||||
srv.sin_port = htons(port);
|
||||
if (inet_pton(AF_INET, host, &srv.sin_addr) <= 0) {
|
||||
perror("inet_pton");
|
||||
close(sock);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (connect(sock, (struct sockaddr *)&srv, sizeof(srv)) < 0) {
|
||||
perror("connect");
|
||||
close(sock);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* ---- optional 4‑byte length prefix (big‑endian) ---- */
|
||||
uint32_t be_len = htonl((uint32_t)len);
|
||||
if (write(sock, &be_len, sizeof(be_len)) != sizeof(be_len)) {
|
||||
perror("write length prefix");
|
||||
close(sock);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* ---- send the raw buffer ---- */
|
||||
size_t sent = 0;
|
||||
while (sent < len) {
|
||||
ssize_t n = write(sock, fb + sent, len - sent);
|
||||
if (n <= 0) {
|
||||
perror("write framebuffer");
|
||||
close(sock);
|
||||
return -1;
|
||||
}
|
||||
sent += n;
|
||||
}
|
||||
|
||||
close(sock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------*/
|
||||
int main(void)
|
||||
{
|
||||
uint8_t *framebuf = malloc(FRAMEBUF_SIZE);
|
||||
if (!framebuf) {
|
||||
fprintf(stderr, "Failed to allocate framebuffer (%zu bytes)\n",
|
||||
(size_t)FRAMEBUF_SIZE);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
while(1){
|
||||
for(uint8_t i=0; i<sizeof(rotAnglesDeg)/sizeof(rotAnglesDeg[0]); i++)
|
||||
rotAnglesDeg[i]=(rotAnglesDeg[i]+3)%180;
|
||||
|
||||
build_framebuffer(framebuf);
|
||||
if (send_framebuffer(framebuf, FRAMEBUF_SIZE, "127.0.0.1", 12345) != 0) {
|
||||
fprintf(stderr, "Failed to send framebuffer\n");
|
||||
free(framebuf);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
usleep(100000);
|
||||
}
|
||||
|
||||
printf("Framebuffer (%zu bytes) sent successfully.\n", (size_t)FRAMEBUF_SIZE);
|
||||
free(framebuf);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
Reference in New Issue
Block a user