Compare commits

...

20 Commits

93
adc.c

@ -0,0 +1,93 @@
#include <avr/io.h>
#include <avr/interrupt.h>
#include "adc.h"
void adc_init()
{
ADMUX = 1 << REFS0 | 0 << REFS1; //Select external Vref
//ADC Status Register A
ADCSRA = 1 << ADEN //Enable ADC
| 1 << ADIE //Enable ISR after conversion complete
//| 1<<ADATE //Freerunning-Mode
//| 1<<ADLAR //2 results bits are left aligned
| 1 << ADPS2 //Set clock-prescaler to 128
| 1 << ADPS1 | 1 << ADPS0;
ADCSRA |= 1 << ADSC; //Start first Conversion for "warmup"
}
void set_ADC_Channel(uint8_t adr)
{
if (adr < 11)
{
ADMUX &= (0b11110000); //Clear MUX-Address
ADMUX |= adr; //Set new MUX-Address
}
}
ISR(ADC_vect)
{
//static uint8_t init[4] = {0,0,0,0};
static uint8_t current_channel = 0;
static uint16_t read_buffer[128];
static uint8_t buffer_pos = 0;
//Reading 10bit conversion result
uint16_t ADC_reading = ADCL; //copy the first LSB bits
ADC_reading |= ADCH << 8; //copy remaing byte
read_buffer[buffer_pos] = ADC_reading;
buffer_pos++;
if(buffer_pos == (sizeof(read_buffer) / sizeof(read_buffer[0]))){
uint32_t sum = 0;
for(uint8_t i = 0; i < buffer_pos; i++){
sum += read_buffer[i];
}
//convert to temperature
sum /= 3;
switch(current_channel){
case 0:
temp_values[3] = sum/buffer_pos;
break;
case 1:
temp_values[0] = sum/buffer_pos;
break;
case 2:
temp_values[1] = sum/buffer_pos;
break;
case 3:
temp_values[2] = sum/buffer_pos;
break;
}
buffer_pos = 0;
current_channel++;
if(current_channel == 4)
current_channel = 0;
set_ADC_Channel(current_channel);
}
ADCSRA |= (1 << ADSC); //Start next conversion
//TODO write non broken adc code
//if(adc_buf[current_channel].position == BUFFER_SIZE-1){
// //if(init[current_channel]){
// //float tmp = (99*adc_avrg[current_channel]) + get_buffer_mean(&adc_buf[current_channel]);
// //tmp /= 100;
// adc_avrg[current_channel] = get_buffer_mean(&adc_buf[current_channel]);
// //}
// //else{
// // adc_avrg[current_channel] = get_buffer_mean(&adc_buf[current_channel]);
// // init[current_channel]=0;
// //}
//}
}

11
adc.h

@ -0,0 +1,11 @@
#ifndef _ADC_H_
#define _ADC_H_
#include <stdint.h>
extern volatile uint16_t temp_values[4];
void adc_init(void);
#endif//_ADC_H_

@ -1,42 +0,0 @@
#include <util/atomic.h>
#include "buffer.h"
void insert_to_buffer(uint16_t val, volatile buffer_t* buf){
ATOMIC_BLOCK(ATOMIC_FORCEON){
buf->position++;
if(buf->position == BUFFER_SIZE)
buf->position = 0;
buf->values[buf->position] = val;
}
}
float get_buffer_mean(volatile buffer_t* buf){
///* discard lowest and highest value */
//uint16_t low=0xFFFF;
//uint16_t high=0;
//uint16_t index_l = 0;
//uint16_t index_h = 0;
//for(uint16_t i=0; i<BUFFER_SIZE; i++){
// if(buf->values[i] < low){
// low=buf->values[i];
// index_l = i;
// }
// if(buf->values[i] > high){
// high=buf->values[i];
// index_h = i;
// }
//}
uint32_t sum = 0;
for(uint16_t i=0; i<BUFFER_SIZE; i++){
//if(i == index_h || i == index_l)
// continue;
sum += buf->values[i];
}
uint16_t res = sum/(BUFFER_SIZE/*-2*/);
return res;
}

@ -1,11 +0,0 @@
#include <stdint.h>
#define BUFFER_SIZE 200
typedef struct {
uint16_t values[BUFFER_SIZE];
uint16_t position;
} buffer_t;
void insert_to_buffer(uint16_t val, volatile buffer_t* buf);
float get_buffer_mean(volatile buffer_t* buf);

61
i2c.c

@ -0,0 +1,61 @@
/*
* i2c.c
*
* Created: 20.01.2018 12:50:54
* Author: Ulrich
*/
#include "i2c.h"
void i2c_init(void){
I2C_PORT |= (1 << SDA_PIN | 1 << SCL_PIN); //Port Pullup
TWCR = 0;
TWSR = 0;
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
_delay_ms(50);
}
//***************************************************************************************
uint8_t i2c_start (uint8_t addr){
uint16_t timeout = 0;
TWCR = (1 << TWINT | 1 << TWSTA | 1 << TWEN);
while(!(TWCR & (1<<TWINT))){
if((timeout++) > 1000) return 1;
}
TWDR = addr;
TWCR = (1 << TWINT | 1 << TWEN);
timeout = 0;
while(!(TWCR & (1<<TWINT))){
if((timeout++) > 1000) return 1;
}
return 0;
}
//***************************************************************************************
uint8_t i2c_byte (uint8_t byte){
uint16_t timeout = 0;
TWDR = byte;
TWCR = (1 << TWINT | 1 << TWEN);
while(!(TWCR & (1<<TWINT))){
if((timeout++) > 1000) return 1;
}
return 0;
}
//***************************************************************************************
uint8_t i2c_readNak(void)
{
uint16_t timeout = 0;
TWCR = (1<<TWINT) | (1<<TWEN);
while(!(TWCR & (1<<TWINT))){
if((timeout++) > 1000) return 0;
}
return TWDR;
}
//***************************************************************************************
void i2c_stop (void){
TWCR = (1 << TWINT | 1 << TWSTO | 1 << TWEN);
TWCR = 0;
}

26
i2c.h

@ -0,0 +1,26 @@
/*
* i2c.h
*
* Created: 20.01.2018 12:51:11
* Author: Ulrich
*/
#ifndef I2C_H_
#define I2C_H_
#include <avr/io.h>
#include <util/delay.h>
//I2C
#define SDA_PIN PC4 //PIN am Atmel
#define SCL_PIN PC5 //PIN am Atmel
#define I2C_PORT PORTC //PORT am Atmel
#define SCL_CLOCK 40000UL
void i2c_init(void);
uint8_t i2c_start (uint8_t);
uint8_t i2c_byte (uint8_t);
uint8_t i2c_readNak(void);
void i2c_stop (void);
#endif /* I2C_H_ */

211
lcd.c

@ -0,0 +1,211 @@
/*
* lcd.c
*
* Created: 20.01.2018 12:51:11
* Author: Ulrich
*/
#include "lcd.h"
volatile unsigned char char_counter = 0;
volatile uint8_t lcd_ctrl_reg = 0;
// output data to lcd
void lcd_out (unsigned char c) {
i2c_start(LCD_I2C_ADDR);
i2c_byte(c | LCD_BACKLIGHT);
i2c_stop();
}
//***************************************************************************************
// CD = Command or Data
void lcd_nibble_out(unsigned char c, unsigned char cd) {
unsigned char out = 0;
unsigned char rs = 0;
if(cd) rs=LCD_RS;
//4 upper bits
if(c & (1<<4)) out |= LCD_D4;
if(c & (1<<5)) out |= LCD_D5;
if(c & (1<<6)) out |= LCD_D6;
if(c & (1<<7)) out |= LCD_D7;
lcd_out(out | rs | LCD_E);
_delay_ms(5);
lcd_out(out | rs);
//4 lower bits
out=0;
if(c & (1<<0)) out |= LCD_D4;
if(c & (1<<1)) out |= LCD_D5;
if(c & (1<<2)) out |= LCD_D6;
if(c & (1<<3)) out |= LCD_D7;
lcd_out(out | rs | LCD_E);
_delay_ms(5);
lcd_out(out | rs );
}
void lcd_set_position(uint8_t row, uint8_t col){
if(col >= LCD_WIDTH)
return;
if(row==0)
lcd_nibble_out(0x80|col, 0);
if(row==1)
lcd_nibble_out(0xC0|col, 0);
if(row==2)
lcd_nibble_out(0x80|(col+LCD_WIDTH), 0);
if(row==3)
lcd_nibble_out(0xC0|(col+LCD_WIDTH), 0);
char_counter = (row * LCD_WIDTH) + col;
}
void lcd_cursor(uint8_t en){
if(en)
lcd_nibble_out(0x08 | 0x04 | 0x02, 0);
else
lcd_nibble_out(0x08 | 0x04, 0);
}
//***************************************************************************************
// clear LCD
void lcd_clear() {
lcd_nibble_out(0x01, 0); // clear display
lcd_nibble_out(0x80, 0);
char_counter = 0;
}
//***************************************************************************************
// LCD home
void lcd_home() {
lcd_nibble_out(0x80, 0);
char_counter = 0;
}
//***************************************************************************************
// Init LCD
void lcd_init() {
unsigned char loop=3;
while(loop--){
lcd_out(LCD_D4 | LCD_D5 | LCD_E);
_delay_ms(10);
lcd_out(LCD_D4 | LCD_D5);
_delay_ms(100);
}
// 4 bit mode
lcd_out(LCD_D5 | LCD_E);
_delay_ms(10);
lcd_out(LCD_D5);
_delay_ms(10);
lcd_nibble_out(0x28, 0);
lcd_nibble_out(0x0C, 0);
lcd_clear();
lcd_cursor(0);
}
//***************************************************************************************
void lcd_write_char (char c) {
if(char_counter == LCD_WIDTH) lcd_set_position(1,0);
if(char_counter == 2*LCD_WIDTH) lcd_set_position(2,0);
if(char_counter == 3*LCD_WIDTH) lcd_set_position(3,0);
if(char_counter == 4*LCD_WIDTH) lcd_set_position(0,0);
char_counter++;
lcd_nibble_out(c, 1);
}
//***************************************************************************************
void lcd_print_str(char *str) {
while (*str != 0){
if(char_counter == LCD_WIDTH) lcd_set_position(1,0);
if(char_counter == 2*LCD_WIDTH) lcd_set_position(2,0);
if(char_counter == 3*LCD_WIDTH) lcd_set_position(3,0);
if(char_counter == 4*LCD_WIDTH) lcd_set_position(0,0);
char_counter++;
lcd_nibble_out(*str++, 1);
}
}
//***************************************************************************************
void lcd_write_P (const char *Buffer,...)
{
va_list ap;
va_start (ap, Buffer);
int format_flag;
char str_buffer[10];
char str_null_buffer[10];
char move = 0;
char Base = 0;
int tmp = 0;
char by;
char *ptr;
//Ausgabe der Zeichen
for(;;){
by = pgm_read_byte(Buffer++);
if(by==0) break; // end of format string
if (by == '%'){
by = pgm_read_byte(Buffer++);
if (isdigit(by)>0){
str_null_buffer[0] = by;
str_null_buffer[1] = '\0';
move = atoi(str_null_buffer);
by = pgm_read_byte(Buffer++);
}
switch (by){
case 's':
ptr = va_arg(ap,char *);
while(*ptr) { lcd_write_char(*ptr++); }
break;
case 'b':
Base = 2;
goto ConversionLoop;
case 'c':
//Int to char
format_flag = va_arg(ap,int);
lcd_write_char (format_flag++);
break;
case 'i':
Base = 10;
goto ConversionLoop;
case 'o':
Base = 8;
goto ConversionLoop;
case 'x':
Base = 16;
//****************************
ConversionLoop:
//****************************
itoa(va_arg(ap,int),str_buffer,Base);
int b=0;
while (str_buffer[b++] != 0){};
b--;
if (b<move){
move -=b;
for (tmp = 0;tmp<move;tmp++){
str_null_buffer[tmp] = '0';
}
//tmp ++;
str_null_buffer[tmp] = '\0';
strcat(str_null_buffer,str_buffer);
strcpy(str_buffer,str_null_buffer);
}
lcd_print_str (str_buffer);
move =0;
break;
}
}else{
lcd_write_char (by);
}
}
va_end(ap);
}

49
lcd.h

@ -0,0 +1,49 @@
/*
* lcd.h
*
* Created: 20.01.2018 12:51:11
* Author: Ulrich
*/
#ifndef __LCD_H__
#define __LCD_H__
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdlib.h>
#include <stdarg.h>
#include <ctype.h>
#include <string.h>
#include <util/delay.h>
#include "i2c.h"
#define LCD_I2C_ADDR 0x4E
//Port Belegung am PCF8574 (1<<PORT)
#define LCD_RS (1<<0)
#define LCD_RW (1<<1)
#define LCD_E (1<<2)
#define LCD_BACKLIGHT (1<<3)
#define LCD_D4 (1<<4)
#define LCD_D5 (1<<5)
#define LCD_D6 (1<<6)
#define LCD_D7 (1<<7)
#define LCD_WIDTH 20
#define LCD_ADDR_LINE1 (0x80)
#define LCD_ADDR_LINE2 (0xC0)
void lcd_init(void);
void lcd_clear(void);
void lcd_home(void);
void lcd_print_str (char *str);
void lcd_write_P (const char *Buffer,...);
void lcd_set_position(uint8_t row, uint8_t col);
void lcd_cursor(uint8_t en);
#define lcd_write(format, args...) lcd_write_P(PSTR(format) , ## args)
#endif

295
main.c

@ -1,171 +1,216 @@
/*
* LCD_HD44780.c
*
* Created: 20.01.2018 12:51:11
* Author: Ulrich
*/
#include <avr/io.h>
#include <util/delay.h>
#include <modbus.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "buffer.h"
#include "lcd.h"
#include "i2c.h"
#include "modbus.h"
#include "menu.h"
#include "adc.h"
#include "pid.h"
void modbusGet(void);
#define COIL1 1<<1
#define COIL2 1<<0
#define COIL3 1<<2
#define COIL4 1<<3
volatile buffer_t adc_buf[4];
volatile float adc_avrg[4];
volatile uint16_t holdingRegisters[10];
volatile float output;
volatile uint16_t temp_values[4];
volatile uint16_t temp_setpoints[4];
volatile uint16_t output;
volatile struct pid controller;
volatile float setpoint_1 = 130;
volatile float setpoint_2 = 150;
volatile float setpoint_3 = 150;
volatile uint32_t duty[3];
void initADC(void)
{
ADMUX = 1 << REFS0 | 0 << REFS1; //Select external Vref
//ADC Status Register A
ADCSRA = 1 << ADEN //Enable ADC
| 1 << ADIE //Enable ISR after conversion complete
//| 1<<ADATE //Freerunning-Mode
//| 1<<ADLAR //2 results bits are left aligned
| 1 << ADPS2 //Set clock-prescaler to 128
| 1 << ADPS1 | 1 << ADPS0;
ADCSRA |= 1 << ADSC; //Start first Conversion for "warmup"
void modbusGet(void) {
if (modbusGetBusState() & (1<<ReceiveCompleted))
{
switch(rxbuffer[1]) {
case fcReadHoldingRegisters:
holdingRegisters[0] = duty[0];
holdingRegisters[1] = duty[1];
holdingRegisters[2] = duty[2];
holdingRegisters[3] = temp_values[0];
holdingRegisters[4] = temp_values[1];
holdingRegisters[5] = temp_values[2];
modbusExchangeRegisters(holdingRegisters,0,10);
break;
case fcPresetSingleRegister:
case fcPresetMultipleRegisters:
modbusExchangeRegisters(holdingRegisters,0,4);
menu_state = holdingRegisters[0];
break;
default:
modbusSendException(ecIllegalFunction);
break;
}
}
}
int main(){
DDRD |= (1 << 4); // LED
DDRD |= (1 << 3); // FU PWM
DDRD |= (1 << 2); // 485 DE
void read_buttons(){
i2c_start(0x71);
uint8_t buttons = i2c_readNak();
i2c_stop();
//TODO error handling
if(buttons & (1 << 0))
set_item(1);
else if(buttons & (1 << 1))
set_item(2);
else if(buttons & (1 << 2))
set_item(3);
else if(buttons & (1 << 3))
set_item(4);
else if(buttons & (1 << 4))
set_item(5);
else if((buttons & (1 << 5)) == 0) // inverted logic on this one
set_item(0);
PORTD |= 1 << 4;
}
DDRB |= 0x0F; // out channels
int main(void)
{
DDRB |= 0x0F; // output coils
DDRD |= (1 << 4); // board LED
PORTD|=(1<<0); // RX
i2c_init();
lcd_init();
adc_init();
enc_init();
// FU PWM on PD3
TCCR2A |= (1 << COM2B1) | (1 << COM2B0);
TCCR2A |= (1 << WGM21) | (1 << WGM20);
TCCR2B |= (1 << CS21);
init_pid(&controller, 1, 0.05, 0);
modbusSetAddress(1);
modbusSetAddress(1);
modbusInit();
// Modbus Tick Timer
TCCR0B|=(1<<CS01); //prescaler 8
//modbus timer
TCCR0B|=(1<<CS01);
TIMSK0|=(1<<TOIE0);
initADC();
sei();
_delay_ms(1000);
init_pid(&controller, 5, 0.2, 0);
// timer for regler
// timer for regulator
TCCR1B|=(1<<CS12) | (1<<CS10);
TIMSK1|=(1<<TOIE1)|(1<<OCIE1A);
while(1){
modbusGet();
}
}
sei();
void set_ADC_Channel(uint8_t adr)
{
if (adr < 11)
{
ADMUX &= (0b11110000); //Clear MUX-Address
ADMUX |= adr; //Set new MUX-Address
}
lcd_clear();
draw_menu();
uint16_t x = 0;
while(1){
modbusGet();
read_buttons();
//blink cursor
if(x==0){
//}
////write values
//if(x % 2048 == 0){
lcd_cursor(0);
write_temps();
write_setpoints();
write_motor();
update_cursor();
}
x++;
if(x >= 1024)
x=0;
}
}
void modbusGet(void) {
if (modbusGetBusState() & (1<<ReceiveCompleted))
{
switch(rxbuffer[1]) {
case fcReadHoldingRegisters:
case fcPresetSingleRegister:
case fcPresetMultipleRegisters:
modbusExchangeRegisters((uint16_t *)&OCR2B,0,1);
break;
case fcReadCoilStatus:
case fcForceSingleCoil:
case fcForceMultipleCoils:
modbusExchangeBits(&PORTB,0,4);
break;
case fcReadInputRegisters:
if(modbusRequestedAddress()<10)
modbusExchangeRegisters((uint16_t *)&adc_avrg,0,8);
else
modbusExchangeRegisters((uint16_t *)&output,10,4);
break;
default:
modbusSendException(ecIllegalFunction);
break;
}
}
ISR(PCINT2_vect){
encoder_isr();
}
ISR(TIMER0_OVF_vect) { //this ISR is called 9765.625 times per second
modbusTickTimer();
}
ISR(TIMER1_COMPA_vect) {
/* turn off outputs */
if(OCR1A >= duty[0]){
PORTB &= ~(COIL1);
PORTD &= ~(1 << 4);
}
if(OCR1A >= duty[1])
PORTB &= ~(COIL2);
if(OCR1A >= duty[2])
PORTB &= ~(COIL3);
uint16_t new_ocr = 0xFFFE;
for(uint8_t i = 0; i < 3; i++){
if((duty[i] > OCR1A) && (duty[i] < new_ocr))
new_ocr = duty[i];
}
OCR1A = new_ocr;
//uint16_t tmp1 = duty[0];
//uint16_t tmp2;
//for(uint8_t i = 0; i < 3; i++){
// if(duty[i] < tmp1 && duty[i] > OCR1A)
// tmp2 = duty[i];
//}
//OCR1A = tmp2;
}
ISR(TIMER1_OVF_vect) {
output = pid_step(&controller, 1, setpoint_1 - adc_avrg[1]);
int16_t tmp_pid = pid_step(&controller, 1, temp_setpoints[0] - temp_values[0]);
if(tmp_pid>=0)
output = tmp_pid;
else
output = 0;
PORTD &= ~(1 << 4);
if(output > 128)
if(output >= 128){
output = 128;
if(output >= 1){
duty[0]=0xFFFE;
}
else if(output >= 1){
uint32_t tmp = output * 512;
if(tmp >= 0x10000)
tmp = 0xFFFE;
OCR1A = tmp;
PORTB |= 0x0E;
duty[0] = tmp;
}
else
OCR1A = 1000;
}
duty[0]=0;
ISR(TIMER1_COMPA_vect) {
/* turn off outputs */
PORTB &= ~(0x0E);
}
ISR(ADC_vect)
{
static uint8_t init[4] = {0,0,0,0};
static uint8_t current_channel = 0;
//Reading 10bit conversion result
uint16_t ADC_reading = ADCL; //copy the first LSB bits
ADC_reading |= ADCH << 8; //copy remaing byte
ADC_reading *= 0.33;
insert_to_buffer(ADC_reading, &adc_buf[current_channel]);
if(adc_buf[current_channel].position == BUFFER_SIZE-1){
if(init[current_channel]){
float tmp = (99*adc_avrg[current_channel]) + get_buffer_mean(&adc_buf[current_channel]);
tmp /= 100;
adc_avrg[current_channel] = tmp;
}
else{
adc_avrg[current_channel] = get_buffer_mean(&adc_buf[current_channel]);
init[current_channel]=0;
}
duty[1] = duty[0] / 100 * temp_setpoints[1];
duty[2] = duty[0] / 100 * temp_setpoints[2];
for(uint8_t i = 0; i < 3; i++){
if(duty[i] >= 0xFFFE)
duty[i] = 0xFFFE;
}
OCR1A = 0xFFFE;
for(uint8_t i = 0; i < 3; i++){
if(duty[i] < OCR1A && duty[i] >= (uint16_t)1000)
OCR1A = duty[i];
}
current_channel++;
if(current_channel == 4)
current_channel = 0;
set_ADC_Channel(current_channel);
if(duty[0] >= 1000){
PORTB |= COIL1;
PORTD |= 1<<4;
}
if(duty[1] >= 1000)
PORTB |= COIL2;
if(duty[2] >= 1000)
PORTB |= COIL3;
ADCSRA |= (1 << ADSC); //Start next conversion
}

@ -1,5 +1,5 @@
TARGET = main
FILES = main modbus buffer pid
FILES = main i2c lcd modbus menu adc pid
MCU = atmega328p
PROGC = m328p
CC = avr-gcc
@ -8,8 +8,8 @@ TOOL = atmelice_isp
BUILDDIR = build
DEFINES = -DF_CPU=18432000UL
CFLAGS =-mmcu=$(MCU) -O2 -Wall $(DEFINES) -I. -std=c99 -ffunction-sections -fdata-sections
CFLAGS =-mmcu=$(MCU) -g -O2 -Wall $(DEFINES) -I. -std=c99 -ffunction-sections -fdata-sections
LDFLAGS =-mmcu=$(MCU) -Wl,--gc-sections
LDFILES = $(foreach FILE,$(FILES),$(BUILDDIR)/$(FILE).o)
@ -25,19 +25,17 @@ $(BUILDDIR)/$(TARGET).elf: $(LDFILES)
$(CC) $(LDFLAGS) $(LDFILES) -o $(BUILDDIR)/$(TARGET).elf
$(BUILDDIR)/$(TARGET).hex : $(BUILDDIR)/$(TARGET).elf
avr-objcopy -j .data -j .text -O ihex $< $@
avr-objcopy -j .data -j .text -O ihex $< $@
fuse:
avrdude -p $(PROGC) -c $(TOOL) -U lfuse:w:0xE8:m -U hfuse:w:0xD1:m
.PHONY=load program size clean
load: $(BUILDDIR)/$(TARGET).hex
avrdude -p $(PROGC) -c $(TOOL) -U flash:w:$(BUILDDIR)/$(TARGET).hex -v -B 2
avrdude -p $(PROGC) -c $(TOOL) -U flash:w:$(BUILDDIR)/$(TARGET).hex -v -B 4MHz
program: clean load
size: $(BUILDDIR)/$(TARGET).elf
avr-size -C --mcu=$(MCU) $(BUILDDIR)/$(TARGET).elf
.PHONY=clean
clean:
rm -rf $(BUILDDIR)

145
menu.c

@ -0,0 +1,145 @@
#include "lcd.h"
#include "menu.h"
#include <stdio.h>
// 0 = nothing selected
// 1 = change zone 1
// 2 = change zone 2
// 3 = change zone 3
volatile uint8_t menu_state = 0;
void write_heater_real_temp(uint8_t n, uint16_t temp){
}
void write_heater_set_temp(uint8_t n, uint16_t temp){
}
void update_cursor(){
switch(menu_state){
case 1:
lcd_set_position(0,5);
lcd_cursor(1);
break;
case 2:
lcd_set_position(0,9);
lcd_cursor(1);
break;
case 3:
lcd_set_position(0,14);
lcd_cursor(1);
break;
case 4:
lcd_set_position(2,9);
lcd_cursor(1);
break;
case 5:
lcd_set_position(3,9);
lcd_cursor(1);
break;
default:
lcd_cursor(0);
break;
}
}
void draw_menu(){
lcd_clear();
lcd_set_position(0, 0);
lcd_write("s:");
lcd_set_position(1, 0);
lcd_write("r:");
lcd_set_position(2, 0);
lcd_write("motor:");
lcd_set_position(3, 0);
lcd_write("fan :");
}
void write_motor(){
char str[5];
str[4] = 0; //null terminated
lcd_set_position(2, 7);
sprintf(str, "%3i", OCR2B);
lcd_print_str(str);
}
void write_temps(){
char str[5];
str[4] = 0; //null terminated
lcd_set_position(1, 3);
sprintf(str, "%3i", temp_values[0]);
str[3] = 0xDF;
lcd_print_str(str);
lcd_set_position(1, 7);
sprintf(str, "%3i", temp_values[1]);
str[3] = 0xDF;
lcd_print_str(str);
lcd_set_position(1, 12);
sprintf(str, "%3d", temp_values[2]);
str[3] = 0xDF;
lcd_print_str(str);
}
void write_setpoints(){
char str[5];
str[4] = 0; //null terminated
lcd_set_position(0, 3);
sprintf(str, "%3i", temp_setpoints[0]);
str[3] = 0xDF;
lcd_print_str(str);
lcd_set_position(0, 7);
sprintf(str, "%3i%%", temp_setpoints[1]);
lcd_print_str(str);
lcd_set_position(0, 12);
sprintf(str, "%3i%%", temp_setpoints[2]);
lcd_print_str(str);
}
void set_item(uint8_t page_num){
//if(menu_state=page_num)
// menu_state=0;
//else
menu_state = page_num;
}
void enc_init(){
PORTD |= (1<<6) | (1 << 7);
PCICR |= (1<<PCIE2);
PCMSK2 |= (1<<PCINT23);
}
void encoder_isr(){
//TODO good quadrature reading code
if((PIND & (1<<7))){
if((menu_state >= 1) && (menu_state <= 3)){
if(PIND & (1<<6))
temp_setpoints[menu_state-1]--;
else
temp_setpoints[menu_state-1]++;
}
if(menu_state == 4){
if(PIND & (1<<6) && (OCR2B > 0))
OCR2B--;
else if(!(PIND & (1<<6)) && (OCR2B < 255))
OCR2B++;
}
}
//if(PIND & (1<<7))
// if(PIND & (1<<6)){
// if(temp_setpoints[menu_state] > 0)
// }
// else{
// if(temp_setpoints[menu_state] < 300)
// }
}

@ -0,0 +1,18 @@
#ifndef _MENU_H_
#include <stdint.h>
extern volatile uint8_t menu_state;
extern volatile uint16_t temp_values[4];
extern volatile uint16_t temp_setpoints[4];
void write_temps(void);
void write_setpoints(void);
void write_motor(void);
void update_cursor(void);
void set_item(uint8_t page_num);
void draw_menu(void);
void enc_init(void);
void encoder_isr(void);
#endif

@ -1,9 +1,11 @@
#include <util/atomic.h>
#include "pid.h"
float pid_step(volatile struct pid* controller, float dt, float error) {
extern volatile uint16_t holdingRegisters[10];
int16_t pid_step(volatile struct pid* controller, float dt, int16_t error) {
// Calculate p term
float p = error * controller->kP;
uint16_t p = error * controller->kP;
// Calculate i term
ATOMIC_BLOCK(ATOMIC_FORCEON){
@ -13,6 +15,8 @@ float pid_step(volatile struct pid* controller, float dt, float error) {
if(controller->integral < -80)
controller->integral = -80;
}
//holdingRegisters[3]=((float)(error) * controller->kI);
//holdingRegisters[4] = error;
// Calculate d term, taking care to not divide by zero
float d = dt == 0 ? 0 : ((error - controller->lastError) / dt) * controller->kD;

@ -1,3 +1,8 @@
#ifndef _PID_H_
#define _PID_H_
#include <stdint.h>
struct pid{
// Controller gains
float kP;
@ -9,6 +14,8 @@ struct pid{
float integral;
};
float pid_step(volatile struct pid* controller, float dt, float error);
//float pid_step(volatile struct pid* controller, float dt, float error);
int16_t pid_step(volatile struct pid* controller, float dt, int16_t error);
void init_pid(volatile struct pid* controller, float p, float i, float d);
#endif

@ -0,0 +1,7 @@
make program
avrdude -c atmelice_isp -p m328p -U hfuse:w:0x99:m
echo "Power cycle now!"
read
avarice -5 -w -P atmega328p :4242 &
read
avrdude -c atmelice_isp -p m328p -U hfuse:w:0xD9:m

@ -0,0 +1,3 @@
avarice -5 -w -P atmega328p :4242 &
sleep 2
avrdude -c atmelice_isp -p m328p -U hfuse:w:0xD9:m
Loading…
Cancel
Save