|
|
|
|
@ -11,7 +11,7 @@
|
|
|
|
|
]{tubsartcl}
|
|
|
|
|
\usepackage[utf8x]{inputenc}
|
|
|
|
|
|
|
|
|
|
\usepackage[ngerman]{babel}
|
|
|
|
|
%\usepackage[ngerman]{babel}
|
|
|
|
|
|
|
|
|
|
\usepackage{multicol}
|
|
|
|
|
|
|
|
|
|
@ -54,22 +54,24 @@ line/.style={-latex} % the lesser the width the greater will be the diagram wi
|
|
|
|
|
\section{Simple combinatorics}
|
|
|
|
|
|
|
|
|
|
\section{XOR cipher}
|
|
|
|
|
\begin{figure}[h]
|
|
|
|
|
\centering
|
|
|
|
|
\begin{tikzpicture}
|
|
|
|
|
\node[block] (m1) {$M_1$};
|
|
|
|
|
\node[block,below=of m1] (k1) {$K$};
|
|
|
|
|
\node[block,below=of k1] (c1) {$C_1$};
|
|
|
|
|
\node[block,below=of k1] (c1) {$C_x$};
|
|
|
|
|
\node at ($(m1)!0.5!(k1)$){$\oplus$};
|
|
|
|
|
\node at ($(k1)!0.5!(c1)$){$=$};
|
|
|
|
|
\node[block,text width=2cm, right=of m1] (mgen) {$C_1 \oplus K$};
|
|
|
|
|
\node[block,text width=2cm, right=of m1] (mgen) {$C_x \oplus K$};
|
|
|
|
|
\node[xshift=-2mm] at ($(m1)!0.5!(mgen)$){$=$};
|
|
|
|
|
\node[draw,inner xsep=5mm,inner ysep=5mm,fit=(mgen)(m1)(k1)(c1)](g){};
|
|
|
|
|
|
|
|
|
|
\node[block, right=of m1, xshift=8cm] (m2) {$M_2$};
|
|
|
|
|
\node[block,below=of m2] (k2) {$K$};
|
|
|
|
|
\node[block,below=of k2] (c2) {$C_2$};
|
|
|
|
|
\node[block,below=of k2] (c2) {$C_y$};
|
|
|
|
|
\node at ($(m2)!0.5!(k2)$){$\oplus$};
|
|
|
|
|
\node at ($(k2)!0.5!(c2)$){$=$};
|
|
|
|
|
\node[block,text width=2cm, left=of k2] (kgen) {$M_2 \oplus C_2$};
|
|
|
|
|
\node[block,text width=2cm, left=of k2] (kgen) {$M_2 \oplus C_y$};
|
|
|
|
|
\node[xshift=2mm] at ($(k2)!0.5!(kgen)$){$=$};
|
|
|
|
|
\node[draw, inner xsep=5mm,inner ysep=5mm,fit=(kgen)(m2)(k2)(c2)](h){};
|
|
|
|
|
|
|
|
|
|
@ -78,7 +80,14 @@ line/.style={-latex} % the lesser the width the greater will be the diagram wi
|
|
|
|
|
|
|
|
|
|
\draw[->] (c1) -| ([xshift=-1cm]mgen);
|
|
|
|
|
\draw[->] (kgen) -| ([xshift=1cm]mgen);
|
|
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\caption{This Diagram shows how an Attacker can calculate the Key $K$ and the Message $M_1$.}
|
|
|
|
|
\end{figure}
|
|
|
|
|
A few requirements must be satisfied in order to get hold of the $K$ and the $M_1$:
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $M_2$ must be longer than $M_1$ or $K$, so that the key can be calculated in at least the needed length.
|
|
|
|
|
\item A successfully decoded message must be distinguishable from an unsuccessfully decoded message, so that the
|
|
|
|
|
cipher texts $C_x$ and $C_y$ can be exchanged if necessary.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\end{document}
|
|
|
|
|
|