|  |  |  | @ -11,7 +11,7 @@ | 
			
		
	
		
			
				
					|  |  |  |  |   ]{tubsartcl} | 
			
		
	
		
			
				
					|  |  |  |  | \usepackage[utf8x]{inputenc} | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | \usepackage[ngerman]{babel} | 
			
		
	
		
			
				
					|  |  |  |  | %\usepackage[ngerman]{babel} | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | \usepackage{multicol} | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  |  | @ -54,22 +54,24 @@ line/.style={-latex}   % the lesser the width the greater will be the diagram wi | 
			
		
	
		
			
				
					|  |  |  |  | \section{Simple combinatorics} | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | \section{XOR cipher} | 
			
		
	
		
			
				
					|  |  |  |  | \begin{figure}[h] | 
			
		
	
		
			
				
					|  |  |  |  |     \centering | 
			
		
	
		
			
				
					|  |  |  |  | \begin{tikzpicture}   | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block] (m1) {$M_1$};   | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,below=of m1] (k1) {$K$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,below=of k1] (c1) {$C_1$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,below=of k1] (c1) {$C_x$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node at ($(m1)!0.5!(k1)$){$\oplus$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node at ($(k1)!0.5!(c1)$){$=$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,text width=2cm, right=of m1] (mgen) {$C_1 \oplus K$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,text width=2cm, right=of m1] (mgen) {$C_x \oplus K$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[xshift=-2mm] at ($(m1)!0.5!(mgen)$){$=$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[draw,inner xsep=5mm,inner ysep=5mm,fit=(mgen)(m1)(k1)(c1)](g){}; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block, right=of m1, xshift=8cm] (m2) {$M_2$};   | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,below=of m2] (k2) {$K$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,below=of k2] (c2) {$C_2$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,below=of k2] (c2) {$C_y$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node at ($(m2)!0.5!(k2)$){$\oplus$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node at ($(k2)!0.5!(c2)$){$=$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,text width=2cm, left=of k2] (kgen) {$M_2 \oplus C_2$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[block,text width=2cm, left=of k2] (kgen) {$M_2 \oplus C_y$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[xshift=2mm] at ($(k2)!0.5!(kgen)$){$=$}; | 
			
		
	
		
			
				
					|  |  |  |  |   \node[draw, inner xsep=5mm,inner ysep=5mm,fit=(kgen)(m2)(k2)(c2)](h){}; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  |  | @ -78,7 +80,14 @@ line/.style={-latex}   % the lesser the width the greater will be the diagram wi | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   \draw[->] (c1) -| ([xshift=-1cm]mgen); | 
			
		
	
		
			
				
					|  |  |  |  |   \draw[->] (kgen) -| ([xshift=1cm]mgen); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | \end{tikzpicture}   | 
			
		
	
		
			
				
					|  |  |  |  | \caption{This Diagram shows how an Attacker can calculate the Key $K$ and the Message $M_1$.} | 
			
		
	
		
			
				
					|  |  |  |  | \end{figure} | 
			
		
	
		
			
				
					|  |  |  |  | A few requirements must be satisfied in order to get hold of the $K$ and the $M_1$: | 
			
		
	
		
			
				
					|  |  |  |  | \begin{itemize} | 
			
		
	
		
			
				
					|  |  |  |  |     \item $M_2$ must be longer than $M_1$ or $K$, so that the key can be calculated in at least the needed length. | 
			
		
	
		
			
				
					|  |  |  |  |     \item A successfully decoded message must be distinguishable from an unsuccessfully decoded message, so that the  | 
			
		
	
		
			
				
					|  |  |  |  |         cipher texts $C_x$ and $C_y$ can be exchanged if necessary. | 
			
		
	
		
			
				
					|  |  |  |  | \end{itemize} | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | \end{document} | 
			
		
	
	
		
			
				
					|  |  |  | 
 |